
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 N

ov
em

be
r 

20
22

 

royalsocietypublishing.org/journal/rsos
Research
Cite this article: Dubied M, Montuire S, Navarro
N. 2022 Functional constraints channel mandible

shape ontogenies in rodents. R. Soc. Open Sci. 9:
220352.

https://doi.org/10.1098/rsos.220352
Received: 21 March 2022

Accepted: 31 August 2022
Subject Category:
Organismal and evolutionary biology

Subject Areas:
evolution

Keywords:
geometric morphometrics, mandible shape,

ontogeny, rodent
Authors for correspondence:
Morgane Dubied

e-mail: morgane.dubied@u-bourgogne.fr

Sophie Montuire

e-mail: sophie.montuire@ephe.psl.eu

Nicolas Navarro

e-mail: nicolas.navarro@ephe.psl.eu
© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

6250547.
Functional constraints
channel mandible shape
ontogenies in rodents
Morgane Dubied1, Sophie Montuire1,2 and

Nicolas Navarro1,2

1Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté,
6 bd Gabriel, 21000 Dijon, France
2EPHE, PSL University, 75014 Paris, France

MD, 0000-0002-9304-2714; SM, 0000-0002-5341-5344;
NN, 0000-0001-5694-4201

In mammals, postnatal growth plays an essential role in the
acquisition of the adult shape. During this period, the mandible
undergoes many changing functional constraints, leading
to spatialization of bone formation and remodelling to
accommodate various dietary and behavioural changes.
The interactions between the bone, muscles and teeth drive
this developmental plasticity, which, in turn, could lead to
convergences in the developmental processes constraining the
directionality of ontogenies, their evolution and thus the adult
shape variation. To test the importance of the interactions
between tissues in shaping the ontogenetic trajectories, we
compared the mandible shape at five postnatal stages on three
rodents: the house mouse, the Mongolian gerbil and the golden
hamster, using geometric morphometrics. After an early shape
differentiation, by both longer gestation and allometric scaling
in gerbils or early divergence of postnatal ontogeny in hamsters
in comparison with the mouse, the ontogenetic trajectories
appear more similar around weaning. The changes in muscle
load associated with new food processing and new behaviours
at weaning seem to impose similar physical constraints on the
mandible, driving the convergences of the ontogeny at that
stage despite an early anatomical differentiation. Nonetheless,
mice present a rather different timing compared with gerbils
or hamsters.
1. Introduction
Variation in time and space of developmental processes within
an anatomical context will influence the mapping from genotypes
to phenotypes [1–5]. Through ontogeny, mechanical forces in
relation to cell properties are fundamental in shaping and
remodelling tissues [6–9]. The physical constraints experienced by
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a growing organism could be similar across a certain range of anatomical contexts, and thenmay structure in
a comparable way the phenotypic variation in influencing the spatialization of the underlying
developmental processes. For example, during mammalian postnatal growth, major biomechanical
changes in response to diet shift at weaning [10] influence the spatialization of bone remodelling [11–13].
Indeed, changes in muscle strain led to convergences in the developmental processes imposing some
directionality in the ontogenetic trajectories despite a relatively diversified anatomical context [14], and
constraining, as a consequence, the evolution of ontogenies and the adult shape variation [15]. However,
early shape differentiation may have a profound effect on the directionality and intensity of shape
changes through ontogenies. For instance, early functional requirements of the jaw or the forelimbs in
relation to precocious suckling or crawling in marsupials have constrained the rate of shape evolution
and disparity in comparison with eutherians [16–19].

The rodent mandible undergoes major modifications on its posterior part in order to accommodate the
growth of masticatory muscles during the postnatal development [20]. These muscle–bone interactions
constrain the main direction of shape changes in the mandible ontogeny across a wide range of rodent
species [14,21]. Several functional and behavioural factors could affect one or the other component of
these interactions. For example, suckling, gnawing and chewing movements have different functional
requirements [22] and different diets will imply a different distribution of stresses [23]. Behaviours in
relation to siblings or conspecifics (fights for example, [24]) will also have functional demands on the
jaws through biting [25]. Changes in the timing and rates of these physical stresses should therefore be
associated with shape changes through their modulation by muscle–bone interactions. This mechanism
is well studied on adult shape covariation with changes in muscle anatomy and diet [26–28] or in
context of ecological radiation [29,30], and it appears to lead to indirect responses of the mandible shape
to the various sources of natural and sexual selections [31,32]. Much less is known on how this
mechanism constrains ontogeny. A good model system for testing the importance of these interactions in
shaping the ontogenies is the major functional shift affecting the mechanical stresses arising at weaning,
which recomposes the field of physical constraints applied to the mandible in relation to the changes in
muscle load associated with new food processing as well as new behaviours.

In this study, we focus on three rodents belonging to the suborder Myomorpha (the house mouse,
Mongolian gerbil and golden hamster), and using geometric morphometrics, we compared the
ontogenetic trajectories of the mandible shape at five postnatal stages. In Myomorpha, weaning is
early and abrupt, as it occurs over a very short period of time, forcing the mandible to adapt rapidly
to the chewing movement. If functional constraints arising at weaning channel the developmental
trajectories, changes affecting the shape ontogenies should be similar across the three species despite
their early shape divergence. Otherwise, shape differentiation inherited from differences of gestational
length or pre-weaning divergence of ontogenies could provide enough variation in the anatomical
context to condition the effect of functional constraints in different ways.
2. Material and methods
2.1. Breeding design and three-dimensional imaging
The specimens were bred in the central animal facility of the University of Burgundy (Project
APAFIS#18405-2019011014262528). Six gravid females of mice (Mus musculus) were obtained from an
internal breeding colony of Balb/c inbred strain at the University of Burgundy. Six gravid females of
golden hamsters (Mesocricetus auratus) were obtained from the inbred colony of Janvier labs (RjHan:
AURA). Gerbils (Meriones unguiculatus) were bred from breeding pairs (five females and two males)
obtained from Charles River (RjTub:MON). In this study, at least one specimen per family was
sacrificed at 7, 14, 35 and 63 days. The 100-day stage is represented by the mothers and, for gerbils,
also by the fathers. Skeletons were cleaned using dermestid beetles. After removing broken specimens,
88 mandibles were scanned by µCT scan (Bruker Skyscan 1174) and reconstructed using Avizo® 9.2
(FEI systems). Before landmark digitization, three-dimensional models were decimated to 200 000
faces, using the Rvcg R package 0.18 [33]. Six specimens per species in average represent each stage.

2.2. Three-dimensional landmarks and semilandmarks collection
Fourteen landmarks were digitized, together with 22 curve semilandmarks along five distinct curves
(with two semilandmarks on the coronoid process curve, three along the two lunar notch curves,
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seven on the curve between postcondylar and angular processes, and 10 on the masseter ridge; electronic
supplementary material, figure S1). Digitization was done within the Digit3DLand R package 0.1.3 [34].
An atlas was created with five patches of surface semilandmarks totalizing 256 semilandmarks, from a
mouse specimen with the PseudoLMGenerator module of the SlicerMorph package [35] on 3D Slicer 4.11
[36]. This atlas was transferred on all models using the ProjectSemiLM module. Curve and surface
semilandmarks were then slid along their tangent by minimizing the bending energy and
back-projected on the three-dimensional surfaces [37] using the Morpho R package 2.9 [33].
ing.org/journal/rsos
R.Soc.Open

Sci.9:220352
2.3. Statistical shape analysis
A full generalized Procrustes analysis (GPA) was performed using the Morpho R package [33].
Procrustes-aligned coordinates were projected on the tangent space at the mean shape and a principal
component analysis was performed. Postnatal developmental trajectories were modelled from the
expected marginal means of each developmental stage per species estimated from a multivariate
linear model according to ẑ ¼ Lb, with L the design matrix corresponding to the linear contrasts for
the different stages of species, and b, the least-square estimates of shape differences. Significance of
the Procrustes sum of squares was evaluated using 1000 residual permutations with the RRPP R
package 0.5.2 [38]. To check for allometry, an additional model with the effect of the log of the
centroid size per species was estimated. The associated regression score [39], which corresponds to the
most correlated shape variable to the allometric vectors, was computed.

Ontogenetic trajectories were parallel transported (PT) prior to analysis in order to remove the
influences of inter-group shape differences on the shape changes along the trajectories [40]. To do so,
and after checking if the variation is small enough, we used the linear shift algorithm, which provides
a Euclidean approximation of the PT [41]. Briefly, as ontogenetic trajectories are defined based on
discrete postnatal stages, we superimposed the 7-day-old expected marginal means ðẑa¼7Þ of each
species using a generalized Procrustes analysis without scaling to obtain a common reference ð�za¼7Þ.
We then superimposed the expected marginal means of all stages on this reference via ordinary
Procrustes analysis using the deformetrics R package [42]. Finally, we added the tangent residual of
each individual from the linear model to the transported mean of the group to which it belongs ðẑtra¼jÞ
to obtain transported individual values. In other words, we translated the shapes into a common
space, centred on the 7-day-old common mean shape. The least-square estimates of shape differences
b were updated accordingly btr ¼ L�1ẑtr. Expected marginal means of growth vectors were then
obtained from the linear contrast between two successive stages as v̂ ¼ (La¼j � La¼j�1)btr.
2.4. Ontogenetic trajectory analysis
To assess the similarity of growth vectors between species, angles between a similar developmental stage
i of two different species, j and k, were computed as u ¼ cos�1 (va¼i,j � v a¼i,k) with the growth vectors v̂
normalized to unit length [43,44]. To assess whether the amount of shape changes between each stage
was similar across species, the magnitude of the growth vector between two developmental stages
was computed as the norm of the vector. Stepwise magnitude of the trajectories was computed as the
sum of the vector norms, which represents the total shape change since birth. The magnitude of each
step was further normalized by the growth length in days to allow comparison across growth periods.
Approximation of standard errors on magnitudes and angles were computed based on the sampling
distribution of btr [14,29,45], and according to v� � N(v̂,Se � (La¼j � La¼j�1)(X 0X)�1(La¼j � La¼j�1)0),
where Se is the residual covariance matrix, and � stands for the Kronecker product. Descriptive
statistics on sampled angles were computed with the circular R package 0.4-93 [46]. Pairwise
differences between trajectories in term of path distances, angles and shapes were evaluated using
1000 permutations [47].

The influence of weaning on the direction of growth was inferred by comparing the trajectory during
weaning (14–35 days) with the trajectories immediately before (7–14 days) and after (35–63 days). These
changes were computed as the angle ðaÞ between these trajectories. As before, standard errors on these
angles were computed based on the sampling distribution of btr.

Shape changes along the trajectories ðv̂Þ were visualized from the common reference ð�za¼7Þ. Meshes
were deformed using thin plate splines and distances between corresponding vertices were reported as
colour on the mesh modelling the end of the trajectory between two developmental stages. These
visualizations were computed with the Morpho R package [33].
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Figure 1. Shape variation of the mandible along the postnatal trajectories. (a) First two principal components (PC) of the variation
in mandible shapes across ages and taxa. (b) Shape changes in relation to PCs based on a mouse reference mesh. (c) Relationship
between PC1 scores and centroid sizes. (d ) Regression scores of the allometric model. Dark grey dots represent expected marginal
means computed for each age by species group. Dotted lines match equivalent ages across species. Ages are given in days
after birth.
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3. Results
3.1. Allometry and shape variation between species
The first two components of the principal component analysis (PCA) account for 78.09% of the total
shape variance (figure 1a). Within species × age variances are much smaller than the ontogenetic
variances (electronic supplementary material, table S1), which spread on the two first components.
The 7-day-old hamsters and mice are grouped together with the 14-day-old hamsters in the
morphospace. Gerbils appear more distant on these first two components in relation to an important
shape difference of the 7-day-old juveniles. PC1 is highly related to the allometric vectors (about 37°
for gerbils and mice and 46° for hamsters), and corresponds to shape changes with an elongation of
the processes, an expansion of all the masseteric fossa, associated with a compression and
straightening of the diastema (figure 1b). The shape difference of gerbils compared with mice is
mainly related to allometry as the 7-day-old gerbils cluster with the 14-day-old mice on PC1 for a
similar size (figure 1c). Some non-allometric differences remain, as the regression scores of the two
species do not overlap (figure 1d ).
3.2. Postnatal developmental trajectories
After accounting for shape differences between species using parallel transport, the 7-day-old juveniles
are grouped together by design (figure 2a), and the trajectories of the two murids (gerbils and mice)
traced similar paths, separating from the cricetid (hamsters) on PC2. Thus, gerbils and mice share
similar patterns of ontogenetic shape changes (i.e. similar anatomical parts of the mandible are
modified in a similar way), whereas hamsters show shape changes along their ontogenetic trajectory



–0.15 –0.10 –0.05 0 0.05

–0.10

–0.05

0

0.05

PC1 (53.28%)

PC
2 

( 
24

.5
9 

%
)

7 days

14 days

35 days

63 days 100 days

gerbil
hamster
mouse

7 > 14 14 >35 35 > 63 63 > 100

0

0.005

0.010

0.015

0.020

no
rm

al
iz

ed
 m

ag
ni

tu
de

θ
be

tw
ee

n 
sp

ec
ie

s

gerbil verus hamster
gerbil verus mouse
hamster verus mouse

7–>14 14–>35 35–>63 63–>100

0

20

40

60

80

100

α
w

ith
in

 s
pe

ci
es

gerbil
hamster
mouse

prior after

0

20

40

60

80

100

+ PC2

+ PC1–PC1

–PC2

(b)(a)

(c) (e)(d)
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different from the two other species (i.e. different parts of the mandible are modified or similar ones but
in a different manner). The two murids tend towards an adult shape with a wide masseteric fossa whose
ventral ridge is very marked, a short coronoid process, a wide condylar process, as well as a shortened
and well-verticalized diastema. Cricetids differentiate during development by acquiring a more
horizontalized mandible with a less extensive masseteric fossa than in murids, as well as highly
developed angular and coronoid processes, deepening the lunar and the posterior notch. The
diastema is more flat and more elongated (figure 2b). Description of ontogenetic shape changes per
species is available in electronic supplementary material, figure S2.

Overall, the amount of shape changes along the ontogeny is similar between species (path distances
equal to 0.26 ± 0.01 for gerbils and mice and 0.28 ± 0.01 for hamsters, electronic supplementary material,
table S2). By contrast, the timing of these changes differs between species. A striking pattern is the
amount of shape changes in mice between 7 and 14 days compared with the two other species
(figure 2c). When hamsters and gerbils show a similar rate of shape changes (0.011 and 0.009 per day,
respectively), in mice, however, this portion of the trajectory is twice as high (0.021 per day). Rate of
shape changes decreases drastically in mice (0.002 per day) between 14 and 35 days, while it stays
about threefold higher in hamsters (0.006 per day) and gerbils (0.005 per day). From 35 days,
whatever the species, the trajectories show minimal rates (between 0.0009 and 0.002 per day). Thus,
whereas hamsters and gerbils have comparable rates of shape changes all along their ontogenetic
trajectories (rates that seem to drop linearly until 35 days old), the mice show a different shape of
their trajectory (electronic supplementary material, table S3) with a very condensed and rapid shape
ontogeny.

As suggested above (figure 2a), gerbils and mice share quite similar directions of shape changes along
their ontogenies (starting with an angle of 37°), accumulating progressively more differences (figure 2d ).
The average directions of these two trajectories have an angle of 33.6°, but again with a timing shift
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between these two species. On the contrary, the hamsters have in the first step a very different direction of
shape changes (forming an angle of 82.30° with the gerbils and 76.39° with the mice). However, from
14 days old, the directions of shape changes in hamsters are much more similar to the two other
species, with a minimal angle for the shape changes arising between 14 and 35 days (θ = 39.28° with
the gerbils and θ = 46.20° with the mice). At this stage, the shape trajectories are in the direction of the
common pattern of growth (transported PC1) with angles ranging from 23.7° for hamsters to 33° for
gerbils (30.5° for mice, p < 0.001), and correspond to the enlargement of the ascending ramus
(figure 2b). Differences in directions between the hamsters and the two murids accumulate afterwards.
The average directions of the three trajectories differ (electronic supplementary material, table S2) but
with an angle on average of 36.7° much smaller than expected between two random vectors ( p < 0.0001).

The directions of shape changes (figure 2e) arising within species prior (7–14 days) to the weaning
phase (14–35 days) are quite different to the trajectory during weaning in both the hamsters (80.5°)
and the gerbils (70.5°). On the contrary, the directions after weaning (35–63 days) are much more
similar to the weaning phase with angles varying from 39.5° in hamsters to 58.4° in gerbils. In mice,
the pattern of differences is more stable with an angle of about 50°, but again, in mice, the ramus
enlargement is more precocious in the postnatal growth.
pen
Sci.9:220352
4. Discussion
Our result supports a shape differentiation of early young gerbils partly by allometric scaling compared
with mice. Gerbils have a longer gestation of 7 days compared with the other two species [48]. This
particularity modifies the onset of postnatal period [49] and explains an already differentiated
mandible at birth [50]. After birth, gerbils present a similar general trajectory than the two other
species but shifted according to this initial offset. Hamsters and mice, despite a large size difference at
birth, share a common mandible shape in the first stage of the postnatal growth.

A common pattern of morphological changes during the postnatal development in the three rodent
species studied was observed. This pattern is partly related to the allometry. Indeed, the mandible of
juveniles presents small processes that will later develop, allowing the growth of the masseteric fossa. In
addition, the diastema, which is initially long and flat, will gradually deepen to allow the incisor to
become vertical. This repatterning highlights the strong modification of the posterior part of the mandible
during early stages of the postnatal growth. Such changes of the mandible have already been observed in
mice [20], in the Sciuridae [21] as well as at a larger scale in the Myomorpha and Hystricomorpha [14].
This geometrical re-spatialization is likely to go hand in hand with the development of the masseter
muscles, which allow articulation between the skull and the mandible. The posterior part of the mandible
develops to accommodate and resist the pressure induced by the activation of these muscles, allowing the
transition from sucking to chewing movement during weaning [51].

The amount of shape change occurring throughout the ontogeny is similar across species according to
the similar growth duration and despite very different body mass [52]. However, the timing of these
changes, i.e. the relative contribution of each stage to the total amount, differs greatly in mice
compared with the two others. In gerbils and hamsters, this timing is quite well conserved with most
of the changes occurring equally between 7 and 35 days. In hamsters, the first signs of chewing and
masseter muscle action are only observed at 14 days [53], and around 16 days in gerbils [54]. Thereby,
the mandible of the mouse undergoes major changes from the first stage (7–14 days). Indeed, it has
already been shown that the bite force of mouse juveniles increases well before food weaning [55],
which may explain early bone remodelling [56]. Early competition among pups and lower parental
care in mice [10,57,58] may explain this acceleration of shape development and the correlated
functional changes in mice compared with the two other species.

Gerbils and mice share quite similar directions of shape changes along their ontogenetic trajectories,
meaning that similar anatomical parts of the mandible are modified in a similar way, and progressively
diverge through the ontogeny. The hamsters have, in the first step, a very different direction of shape
changes that seems supported by an important growth of the coronoid process. This differentiation is
consistent with the known divergences of the mandibular movement during chewing. It contrasts the
mouse and gerbil, which chew with a propalinal motion [59–62], to the hamster, which exhibits an
oblique motion [59,61]. Anatomical constraints on the jaw movements appear to be established at an
early age and may therefore also influence sucking movements. This early onset of specific
movements could in turn influence bone growth as human-induced changes do [60]. However,
movements may not be strictly constrained and, for instance, propalinal movements have been
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observed in hamsters to adapt their chewing to seed processing [63]. Ontogenetic data on the acquisition
process of movement types are therefore needed to reach any robust conclusion but are not yet
documented to our knowledge.

After these early anatomical differences, the ontogenetic trajectories of the three species become more
similar between 14 and 35 days. This channelling of the ontogenetic variation corresponds to shape
changes in the direction of the main pattern of changes (parallel transported PC1), which appears to
be related to the expansion of the ascending ramus. The transition of mandible movement between
sucking and chewing occurs at around 21 days for mice and hamsters [64,65] and 30 days for gerbils
[48]. This transition implies new mechanical constraints on the bone [66], which may explain the
convergence of the directions of change at this stage between the three species. If the early divergence
of the trajectories relates to the movement acquisition, then their convergence at weaning is probably
more related to the functional load of the mandible by muscles than to the movements themselves.
Reduction in muscle mass or activity by the use of soft diet, chirurgical intervention or in the case of
muscular dystrophy led to smaller condyle and reduction in the height of the ramus [67] in agreement
with the observed pattern of shape changes.

In mice, the directions of shape changes before and after weaning are just as different from the
changes that occur during the weaning phase. Indeed, the intense shape changes occurring before 14
days in this species may explain this similarity. In hamsters and gerbils, the directions of shape
changes within species prior to the weaning are quite different to the trajectory during weaning. As
expected, if the mechanical forces induced by mastication influence growth [68,69], the directions after
weaning are much more similar to the direction of shape changes during the weaning phase for these
two species than the prior-weaning trajectories. Thus, in hamsters and gerbils, the weaning period
seems to have a significant impact on shape ontogeny in implying similar local bone growth in
relation to the functional constraints. The mechanical stresses of occlusion and masticatory function
during this period implied an adaptive response of the bone both in term of anatomy [10] and
structure [60,70]. Changes in feeding behaviour are associated with changes in social behaviour
(behavioural weaning) with the mother and other juveniles [61,62,71]. Fighting or playing with
siblings for example [24] will also contribute to the total physical stress applied to the mandible and
therefore will contribute to the effect of bone loading on shape changes occurring at this period. This
bone response at both structural and anatomical levels could allow an indirect response to some
potential selection arising at this stage among siblings and conspecifics. This indirect process may
then have driven some mandibular shape divergences over time.
5. Conclusion
Throughout the postnatal ontogeny, similar shape changes, with an increase in the posterior part of the
bone and a straightening of the diastema, are observed across the three rodent species. Nonetheless, mice
present very different timing compared with the gerbils or the hamsters. The mouse mandible undergoes
most of its changes just before weaning, thus inducing little shape modifications during and especially
after this event, which may be related to the early increase of bite force observed in the literature. On
the other hand, the longer gestational period of the gerbil seems to condition a time-shifted trajectory
and a mandibular shape divergence partly by allometric scaling in comparison with the mouse. After
an early shape divergence between subfamilies, muscular loading and other mechanical stresses
arising around weaning drive similarly the ontogenetic shape changes in both gerbils and hamsters,
consistent with the earlier changes observed in mice.

Ethics. Breeding of animals used in this study complies with all local guidelines and was conducted in compliance with
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