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Mapping multiple QTLs of geometric shape
of the mouse mandible

Nicolas Navarro* & Christian Peter Klingenberg

Faculty of Life Sciences, University of Manchester

1 Introduction

High resolution genome scans from complex, advanced genetic designs yield many potential
QTLs (Navarro & Klingenberg 2006, Valdaret al. 2006). However, the complex structure
of the linkage disequilibrium between molecular markers and the unbalance of the population
(i.e. family structure) lead to the inflation of the genetic association and the results from the
initial genome scan produce many false positives. The highly structured genetic relatedness of
individuals in these designs makes usual methods inapplicable. Building models incorporating
multiple QTLs is therefore a necessary step in order to control for the linkage disequilibrium
and haplotype structures of the population.

The problem can be stated as choosing a subset of thep candidates explaining a large amount
of the genetic variance present in theq-variate phenotype, and can be formulated into a mul-
tivariate multiple regression framework. However, uncertainties in the model selection need
to be incorporated (Bucklandet al. 1996). Bayesian approaches have been proposed for these
variable selection and model choice problems (e.g., Brownet al. 1998). Frequentist alternatives
based on bootstrap aggregation (bagging, Breiman 1996), subsample aggregation (subagging,
Bühlmann & Yu 2002) or bootstrap model averaging (Augustinet al. 2005) have been proposed
or applied in a univariate multiple regression setting.

The integration of model uncertainties provides the opportunity to estimate the likelihood of
a locus to be genuine QTL (see Valdaret al. 2006). These authors used a bagging approach and
forward selection on univariate phenotypes from 8-way heterogeneous stock mice. However, re-
dundancy in bootstrap samples implied model instability when the dimensionality of the model
becomes high as we expected with shape. In this paper, we extended their approach to multi-
variate, highly polygenic phenotype. We stabilised the approach using subsampling instead of
bootstrapping, and we proposed to average models based on parameter estimates obtained from
the complete sample instead of aggregating them. We appliedthe proposed approach for high
resolution mapping of QTLs of the mandible shape of 8-way heterogeneous stock mice where
p = 258 potential QTLs were previously selected over the 12,092 marker intervals.

2 Building multiple QTLs models

The problem of mapping multiple QTLs can be expressed as the following multivariate linear
model

Y = XB + E, (1)

with a (n×q) centered (for convenience) phenotypic matrixY, a(n×gp) design matrixX of g

founder genotypes of thep loci, the(gp×q) matrix of genetic effectsB, and the(n×q) residual
matrix E. We set a binaryp-vectorγ such as itslth element is either1 or 0 depending if the
locusl is selected in the model or not. Therefore, considering thismodel vector, the equation

125



(1) can be re-written as
Y = X(γ)Bγ + E, (2)

with X(γ) the (gL) subset of the columns ofX for which γl = 1 andL = |γ| the number of
selected loci. The corresponding(gL × q) matrix of genetic effects isBγ. The least squares
estimates of these effects are then

B̂γ = (X′

(γ)X(γ))
−
X

′

(γ)Y, (3)

where(X′
X)− is the Moore-Penrose generalised inverse of the cross-product ofX.

Computational effectiveness and model dimensionality made forward selection the most
suitable approach to build the model from our type of data. According to a current model state
γ (e.g., without any locus incorporated,∀l, γl = 0), we screened independently all remaining
loci with γl = 0 by setting one at the time theirγl = 1. We estimated the residual sum of squares
and cross product (SSCP) matrix given this new model stateγ∗ = {γ, γl} that incorporated all
loci previously selected and the locusl under consideration. This new residual SSCP matrix is

Eγ∗ = Y
′
Y − B

′

γ∗X
′

(γ∗)X(γ∗)Bγ∗ . (4)

The presence of a QTL in the marker intervall is evaluated using the Bartlett’s approximation
of the Wilk’s Λ statistic

−(n − rγ∗ −
1

2
(d − (rγ∗ − rγ) + 1)) log

(

|Eγ∗|

|Eγ|

)

∼ χ2
d(rγ∗−rγ), (5)

with n the sample size,d the dimensionality of the shape space,rγ the rank of the cross-product
of X(γ) which is equal to its number of non-zero eigenvalues. The determinants of the residual
SSCP matrices|.| are calculated as the product of non-zero eigenvalues of thematrix. The new
model stateγ after this screening is chosen as the candidate modelγ∗ having maximal− log10

of thep-value (LogP ) from the equation (5). The locus selection is stopped when thisLogP of
the best candidate modelγ∗ is lower than a predefined threshold.

Given thep initial candidate loci, possible modelsγ are a{0, 1}p space (Brownet al. 1998).
The number of possibleγ-vectors is therefore2p which in our application (section 3) with
p = 258 is 2258 ≈ 4 × 1077. We use a Monte Carlo approach based on a subsampling without
replacement of0.63×n of the original sample in order to explore this model space conditionally
on the forward selection. This reduced sample size has been chosen given the expected number
of unique observations in a bootstrap sample (method previously used for multiple QTL model
construction with a 8-way cross, see Valdaret al. (2006)). According to theM γ-vectors, the
selection frequency of the locusl is h(l) =

∑M

m=1 γ
(m)
l . This frequencyh(l) gives support for

the candidate locusl to be an actual QTL based on its consistency in models.
According to a model averaging approach, we re-computed allγ-models using the complete

sample sizen before averaging genetic parametersθ according tōθ =
∑M

m=1 θγ(m)wm instead
to use averages of the estimates obtained from the resampling. These parameters include the
allelic effectB but also the partialLogP of each locus in theγ-model. We don’t eliminate any
locus with ah(l) lower than some threshold and therefore give an equal weightwm = M−1 to
each model in the averaging step on contrary to the approach proposed for bootstrap averaging
that incorporate an elimination step and a second resampling procedure in order to derive model
weights (see Augustinet al. 2005). Although these steps are straightforward to implement, loci
with small selection frequency are likely to account for background genetic effects linked to the
population structure.
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3 Application: Mandible shape of heterogeneous stock mice

In this study, we used mice derived from the50th generation of crossing eight inbred strains. In
the final generation, each chromosome is a fine grained mosaicof these eight founders (Mottet
al. 2000). Mice were genotyped at∼ 15K single nucleotide polymorphisms (SNP) from which
12K were informative (Valdaret al 2006).

An interval-wide probability of the QTL alleles was obtained from a multipoint dynamic
programming algorithm using the HAPPYR package (Mottet al. 2000). This interval-wide
probabilityFLi(s, t) is the probability that the individuali descended from the founder strains
s and t at marker intervall (Mott et al. 2000). We consider here only an additive genetic
model. Therefore, we use the expected number of alleles of each ancestral strain at each locus
as explanatory variables in our regression setting. This expected number of alleles from the
founders for theith individual at the locusl is x

(s)
i =

∑8
t=1 Fli(s, t) + Fli(t, s).

The mandible shape was described by15 landmarks in2 dimensions. As far as possible
left and right mandibles were digitised, yielding2, 053 individuals with one or both mandibles,
of which1, 697 individuals were genotyped. A full generalised Procrustesanalysis including a
reflection step to take into account the matching symmetry was performed (Dryden & Mardia
1998; Klingenberg & McIntyre 1998). The tangent coordinates were averaged over the two
sides in order to remove variation due to asymmetry.

Firstly, we ran an initial genome scan using multivariable multiple regression with gender
and centroid size as covariates and incorporating only one locus at a time. The association
along each chromosome between the founder haplotypes and shape was returned as theLogP

obtained from the equation (5) with a candidate modelγ∗ incorporating only one locus (L = 1)
against a reduced modelγ without any genetic effect (L = 0). In preliminary analyses, we found
massive multicollinearity problems inX(γ∗). These multicollinearities are due to uncertainties
in the founder probabilities within a locus arising from genetic linkage and sharing of haplotype
blocks between founder strains. Therefore, we adjusted theway to compute generalised inverses
of X′

(γ∗)X(γ∗) by relaxing the threshold on eigenvalues equal to zero.
Then, we selected locations of potential QTLs using the known linkage disequilibrium in

the population (see Valdaret al. 2006). We defined a candidate as a local maximumLogP in
a window of 2Mb to the left and right, but at least 4Mb distant from other selected peaks. This
candidate also has to exceed a threshold corresponding to the expected value of association
between founder probabilities and shape given an infinitesimal model (i.e. a model incorpo-
rating a multitude of loci but not localisable and of small effects but yielding to the observed
components of variance-covariance in the population, and keeping the pedigree structure of this
population). This primo selection yielded258 potential loci on the19 autosomes.

On these candidates, we applied the multiple QTLs approach described above. Gender
and centroid size were always incorporated as covariates inthe models. We ran1, 000 model
searches using a sample size of1, 070. We stopped the forward selection when theLogP of the
best candidate modelγ∗ (i.e. the best locus to enter) was lower than a threshold corresponding
to the genome-wide null hypothesis of no genetic and no family effects. This threshold was
constructed by reshuffling the phenotypic data, recording the maximumLogP in the genomes
and taking the5th upper-quantile of the maximumLogP distribution from1, 000 reshufflings
(Churchill & Doerge 1994). Selection frequencies of the loci h(l) range from0 to 1 with a
high frequency lower than0.1. Considering an arbitrary threshold ofh(l) ≥ 0.25, 52 loci can
be considered as actual QTLs. Nevertheless, calibration ofthis threshold given its expected
number of false positive QTLs is required and will have to be done according to the structure of
genotypic and phenotypic data.
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4 Conclusion

Using complex genetic designs to discover the genetic basisof quantitative traits is a challeng-
ing task. Here, we formalised and stabilised the approach for high dimensional models and
multivariate traits using subsampling model averaging. Based on consistencies found in locus
selection, this approach was able to identify52 loci likely to be genuine QTLs from the initial
set of258 candidates. Therefore, this approach seems to be an alternative and promising tool
compared to usual approaches that are highly confounded by the complex, unbalanced genetic
relatedness of individuals in these new complex genetic crosses.
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