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Mapping multiple QTL sof geometric shape
of the mouse mandible

Nicolas Navarro* & Christian Peter Klingenberg

Faculty of Life Sciences, University of Manchester

1 Introduction

High resolution genome scans from complex, advanced gedesigns yield many potential
QTLs (Navarro & Klingenberg 2006, Valdat al. 2006). However, the complex structure
of the linkage disequilibrium between molecular markerd #re unbalance of the population
(i.e. family structure) lead to the inflation of the genetgsaciation and the results from the
initial genome scan produce many false positives. The higtlictured genetic relatedness of
individuals in these designs makes usual methods inajdicBuilding models incorporating
multiple QTLs is therefore a necessary step in order to obfior the linkage disequilibrium
and haplotype structures of the population.

The problem can be stated as choosing a subset pfdhedidates explaining a large amount
of the genetic variance present in thiariate phenotype, and can be formulated into a mul-
tivariate multiple regression framework. However, unagties in the model selection need
to be incorporated (Bucklangt al. 1996). Bayesian approaches have been proposed for these
variable selection and model choice problems (e.g., Bretveh 1998). Frequentist alternatives
based on bootstrap aggregation (bagging, Breiman 19963asuple aggregation (subagging,
Biuhimann & Yu 2002) or bootstrap model averaging (Augustial. 2005) have been proposed
or applied in a univariate multiple regression setting.

The integration of model uncertainties provides the opputy to estimate the likelihood of
a locus to be genuine QTL (see Valaal. 2006). These authors used a bagging approach and
forward selection on univariate phenotypes from 8-way togfeneous stock mice. However, re-
dundancy in bootstrap samples implied model instabilitgwthe dimensionality of the model
becomes high as we expected with shape. In this paper, wededdheir approach to multi-
variate, highly polygenic phenotype. We stabilised theragph using subsampling instead of
bootstrapping, and we proposed to average models basedamgtar estimates obtained from
the complete sample instead of aggregating them. We apihleedroposed approach for high
resolution mapping of QTLs of the mandible shape of 8-wagtwgfeneous stock mice where
p = 258 potential QTLs were previously selected over the 12,09XKerantervals.

2 Building multiple QTLs models

The problem of mapping multiple QTLs can be expressed asdll@wing multivariate linear
model
Y = XB +E, (1)

with a (n x ¢) centered (for convenience) phenotypic malfixa(n x gp) design matrixX of ¢
founder genotypes of theloci, the(gp x ¢) matrix of genetic effect®, and the(n x ¢) residual
matrix E. We set a binary-vector~ such as itdth element is eithet or 0 depending if the
locus! is selected in the model or not. Therefore, consideringrioslel vector, the equation
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(1) can be re-written as
Y = X(’Y)B’Y + E, (2)

with X the (¢L) subset of the columns & for which~; = 1 andL = |v| the number of
selected loci. The correspondiigl x ¢) matrix of genetic effects i8,. The least squares
estimates of these effects are then
B’Y - ( /(’y)X(’Y))_X,('y)Yv (3)

where(X’'X)~ is the Moore-Penrose generalised inverse of the crossuptad X.

Computational effectiveness and model dimensionality enfagward selection the most
suitable approach to build the model from our type of datacokding to a current model state
~ (e.g., without any locus incorporated,, v, = 0), we screened independently all remaining
loci with v, = 0 by setting one at the time thejr = 1. We estimated the residual sum of squares
and cross product (SSCP) matrix given this new model state {~,~;} that incorporated all
loci previously selected and the locusnder consideration. This new residual SSCP matrix is

E’Y* — Y,Y - Biy* /('Y*)X(’Y*)B'Y* (4)

The presence of a QTL in the marker intervas evaluated using the Bartlett's approximation
of the Wilk’s A statistic

1 E. -
_(n = Ty — _(d - (T’Y* - T’Y) + 1)) log ‘ s ‘ ~ X?l(r *—Tny)? (5)
2 E,| e

with » the sample size] the dimensionality of the shape spacethe rank of the cross-product
of X(,) which is equal to its number of non-zero eigenvalues. Therdghants of the residual
SSCP matrice§| are calculated as the product of non-zero eigenvalues ah#igx. The new
model statey after this screening is chosen as the candidate mpdehving maximal- log,,
of thep-value (Log P) from the equation (5). The locus selection is stopped wheiog P of
the best candidate model is lower than a predefined threshold.

Given thep initial candidate loci, possible modejsare a{0, 1}” space (Browst al. 1998).
The number of possible-vectors is therefor@? which in our application (section 3) with
p = 2581is2%® ~ 4 x 107". We use a Monte Carlo approach based on a subsampling without
replacement 06.63 x n of the original sample in order to explore this model spacedd@mnally
on the forward selection. This reduced sample size has bemen given the expected number
of unique observations in a bootstrap sample (method pusiyaised for multiple QTL model
construction with a 8-way cross, see Valdaal. (2006)). According to thel/ ~-vectors, the
selection frequency of the locudss h(l) = fo:l %(m). This frequency:(1) gives support for
the candidate locusto be an actual QTL based on its consistency in models.

According to a model averaging approach, we re-computegalbdels using the complete
sample sizex before averaging genetic parametérsccording tod = fo:l 0., emwy, instead
to use averages of the estimates obtained from the resagnplimese parameters include the
allelic effectB but also the partialLog P of each locus in the-model. We don’t eliminate any
locus with ah(l) lower than some threshold and therefore give an equal weight= M/ ~! to
each model in the averaging step on contrary to the appraagoped for bootstrap averaging
that incorporate an elimination step and a second resagptotedure in order to derive model
weights (see Augustia al. 2005). Although these steps are straightforward to implemnieci
with small selection frequency are likely to account forkground genetic effects linked to the
population structure.
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3 Application: Mandible shape of heterogeneous stock mice

In this study, we used mice derived from th#" generation of crossing eight inbred strains. In
the final generation, each chromosome is a fine grained mofktiese eight founders (Mot

al. 2000). Mice were genotyped at 15K single nucleotide polymorphisms (SNP) from which
12K were informative (Valdaget al 2006).

An interval-wide probability of the QTL alleles was obtathom a multipoint dynamic
programming algorithm using the HAPPK package (Motet al. 2000). This interval-wide
probability F;(s, t) is the probability that the individualdescended from the founder strains
s andt at marker interval (Mott et al. 2000). We consider here only an additive genetic
model. Therefore, we use the expected number of allelesabf @acestral strain at each locus
as explanatory variables in our regression setting. Thpeeted number of alleles from the
founders for theith individual at the locusis z\” = S°% | F(s, 1) + Fu(t, s).

The mandible shape was describedlbylandmarks in2 dimensions. As far as possible
left and right mandibles were digitised, yieldiag053 individuals with one or both mandibles,
of which 1, 697 individuals were genotyped. A full generalised Procrusieslysis including a
reflection step to take into account the matching symmetry peaformed (Dryden & Mardia
1998; Klingenberg & Mcintyre 1998). The tangent coordisatere averaged over the two
sides in order to remove variation due to asymmetry.

Firstly, we ran an initial genome scan using multivariabheltiple regression with gender
and centroid size as covariates and incorporating only onesl at a time. The association
along each chromosome between the founder haplotypes apeé sfas returned as thieg P
obtained from the equation (5) with a candidate medehcorporating only one locud(= 1)
against a reduced modelithout any genetic effect/( = 0). In preliminary analyses, we found
massive multicollinearity problems iK,-). These multicollinearities are due to uncertainties
in the founder probabilities within a locus arising from gén linkage and sharing of haplotype
blocks between founder strains. Therefore, we adjusteddyedo compute generalised inverses
of X{.,X(,+) by relaxing the threshold on eigenvalues equal to zero.

Then, we selected locations of potential QTLs using the knbikage disequilibrium in
the population (see Valdat al. 2006). We defined a candidate as a local maxiniuwmP in
a window of 2Mb to the left and right, but at least 4Mb distamoni other selected peaks. This
candidate also has to exceed a threshold corresponding texipected value of association
between founder probabilities and shape given an infimtasimodel (i.e. a model incorpo-
rating a multitude of loci but not localisable and of smafeefs but yielding to the observed
components of variance-covariance in the population, @egiag the pedigree structure of this
population). This primo selection yield€d8 potential loci on the 9 autosomes.

On these candidates, we applied the multiple QTLs approaskribed above. Gender
and centroid size were always incorporated as covariatdseimodels. We ram, 000 model
searches using a sample size di70. We stopped the forward selection when fhey P of the
best candidate model (i.e. the best locus to enter) was lower than a thresholdesponding
to the genome-wide null hypothesis of no genetic and no fasffects. This threshold was
constructed by reshuffling the phenotypic data, recordmggnhaximumLog P in the genomes
and taking theésth upper-quantile of the maximuibog P distribution from1, 000 reshufflings
(Churchill & Doerge 1994). Selection frequencies of thei lb@) range from0 to 1 with a
high frequency lower thafi.1. Considering an arbitrary threshold bfl) > 0.25, 52 loci can
be considered as actual QTLs. Nevertheless, calibratighisfthreshold given its expected
number of false positive QTLs is required and will have to baelaccording to the structure of
genotypic and phenotypic data.
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4 Conclusion

Using complex genetic designs to discover the genetic lodgjgantitative traits is a challeng-
ing task. Here, we formalised and stabilised the approackhifgh dimensional models and
multivariate traits using subsampling model averagingsdgbon consistencies found in locus
selection, this approach was able to idenfifyloci likely to be genuine QTLs from the initial
set 0f258 candidates. Therefore, this approach seems to be an aieraad promising tool
compared to usual approaches that are highly confoundeddebyamplex, unbalanced genetic
relatedness of individuals in these new complex genetissa®.
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