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ABSTRACT We describe the application of high-resolution 3D microcomputed tomography, together with
3D landmarks and geometric morphometrics, to validate and further improve previous quantitative genetic
studies that reported QTL responsible for variation in the mandible shape of laboratory mice using a new
backcross between C57BL/6J and A/J inbred strains. Despite the increasing availability of 3D imaging
techniques, artificial flattening of the mandible by 2D imaging techniques seems at first an acceptable
compromise for large-scale phenotyping protocols, thanks to an abundance of low-cost digital imaging
systems such as microscopes or digital cameras. We evaluated the gain of information from considering
explicitly this additional third dimension, and also from capturing variation on the bone surface where no
precise anatomical landmark can be marked. Multivariate QTL mapping conducted with different landmark
configurations (2D vs. 3D; manual vs. semilandmarks) broadly agreed with the findings of previous studies.
Significantly more QTL (23) were identified and more precisely mapped when the mandible shape was
captured with a large set of semilandmarks coupled with manual landmarks. It appears that finer phenotypic
characterization of the mandibular shape with 3D landmarks, along with higher density genotyping, yields
better insights into the genetic architecture of mandibular development. Most of the main variation is,
nonetheless, preferentially embedded in the natural 2D plane of the hemi-mandible, reinforcing the results
of earlier influential investigations.
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Geometric morphometric methods based on landmarks offer a conve-
nient statistical framework to conduct quantitative genetic analyses of
the shape of complex morphological structures such as the skull and
mandible (Klingenberg 2010). Among model systems in the genetics
and development of complex traits, the mouse mandible is probably
one of the most extensively used (Atchley et al. 1985; Atchley and Hall

1991). The primary reason for this success is its intermediate level of
complexity (Klingenberg and Navarro 2012) between rather complex
models, such as the skull (Hallgrímsson et al. 2014), and simpler
models, such as the Drosophila wing (Dworkin et al. 2011; Debat et al.
2009) or other insect appendages (e.g., Khila et al. 2009; Emília Santos
et al. 2015; Prud’homme et al. 2012). One historical reason, and probably
a major constituent of that success, is the relative flatness of this bone,
allowing rudimentary 2D imaging techniques to be used effectively.

Genetic architecture, imprinting effects, integration, andmodularity
of themousemandible have been investigated in fairly high detail using
geometric morphometrics (Klingenberg et al. 2001, 2004; Leamy et al.
2008; Suto 2009; Boell et al. 2011, 2013; Boell 2013; Boell and Tautz
2011). One common assumption in the majority of these studies is the
approximation of themandible to a 2D shape based on a photograph of
either the medial or the buccal sides. The 2D imaging of 3D shapes is
well known to incur information loss and errors due to object projection
(see Cardini 2014, for a review of this source of error). This flattening
may represent a major factor of variation in the sample because of its

Copyright © 2016 Navarro, Maga
doi: 10.1534/g3.115.024372
Manuscript received October 30, 2015; accepted for publication February 16,
2016; published Early Online February 23, 2016.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material is available online at www.g3journal.org/lookup/suppl/
doi:10.1534/g3.115.024372/-/DC1
1Corresponding author: Biogéosciences, UMR 6282, Univ. Bourgogne Franche-
Comté, 6 bd Gabriel, F-21000 Dijon, France. E-mail: nicolas.navarro@ephe.
sorbonne.fr

Volume 6 | May 2016 | 1153

http://orcid.org/0000-0001-5694-4201
http://orcid.org/0000-0002-7921-9018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.024372/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.024372/-/DC1
mailto:nicolas.navarro@ephe.sorbonne.fr
mailto:nicolas.navarro@ephe.sorbonne.fr


intricate interactionwith the positioning of the object and its shape itself.
Nonetheless, for years it has been a common practice in the community
to collect data in 2D, mainly because of technical availability and feasi-
bility as well as processing speed compared to 3D data. Despite potential
consequences, the 2Dprojection error inherent to this practice has rarely
been explicitly assessed in morphometric protocols compared to
other kind of digitization and observer errors that are routinely
controlled (e.g., Muñoz-Muñoz and Perpiñan 2010; Yezerinac
et al. 1992). For the mandible, the sole study that we are aware of
reports that 2D approximation is actually accurate for marmot data
(Cardini 2014). With the increased availability and reduced cost of
both surface and volumetric high-resolution imaging, it is becoming
more andmore feasible to conduct studies using 3D landmarks, thus
reducing the risks of issues related to artificial 2D flattening.

At the same time, in genetics, there is growing interest indeciphering
the genetic architecture of within-population variation and local
adaptation using genome-wide association studies in either natural
populations or outbred stocks (Mott and Flint 2013; Flint and Eskin
2012). In such populations, variants segregate at variable frequencies
and linkage disequilibrium is in the order of a few dozen kb (Yalcin
et al. 2010), and this molecular variation needs to be captured. Now-
adays, dense SNP maps obtained from genotyping arrays that are
commercially available, or from diverse genotyping-by-sequencing
techniques such as whole-genome resequencing (Huang et al.
2009), RAD-seq (Baird et al. 2008; Peterson et al. 2012; Miller et al.
2007), multiplexed shotgun sequencing (Andolfatto et al. 2011;
Cande et al. 2012), or targeted capture (Jones and Good 2016; Linnen
et al. 2013; Olson 2007; Chevalier et al. 2014; Hodges et al. 2007;
Gnirke et al. 2009), may yielded thousands to millions of SNPs even
in species lacking a reference genome (Elshire et al. 2011). This struc-
ture of molecular variation requires the use of large sample sizes that
are in the order of a few thousands in the best case scenario of
average minor allele frequencies (e.g., Valdar et al. 2006; Navarro and
Klingenberg 2007). Failure to reach these high sample sizes will un-
doubtedly result in difficulties with reaching significance and being
able to make decisions between noise and signal in associations
(Ledur et al. 2009). These studies may finally come up with mixed
results, mapping the main players but accounting only for a low
fraction of the total genetic variance, suggesting a large amount of
missing heritability (e.g., Pallares et al. 2014).

Whether the imagingmodality is 2D or 3D, the process of acquiring
landmark coordinates has remained predominantly the same over the
last 30 years, i.e., tedious, manual expert annotation of the anatomy.
Moreover, the third dimension presents unique challenges (e.g., dealing
with the accurate projection of 3D structures on a 2D medium like
a computer screen and/or artifacts relating to the orthographic or per-
spective rendering of the specimen), and the amount of time required
to access the accuracy of landmarking (i.e., making sure the selected
landmark is actually located on the specimen, not an artifact of the 3D
rendering angle) clearly counterbalances the gains by a dramatic cost
on the actual feasible sample size. Landmarking in 3D requires 10–
60 sec/landmark depending on the expertise and software used (Bromiley
et al. 2014). These numbers are also in the order of time required for the
digitization of a complete mandible in 2D. Modern phenomics need
large sample sizes to follow high-throughput genomic technologies
and questions of modern genetics (Houle et al. 2010). A variety of
alternatives to manual expert annotation exist or are currently under
development depending on the field and the imaging modalities used
(Perakis et al. 2014, 2010; Liu et al. 2008; Aneja et al. 2015; Guo et al.
2013). For instance, attempts have been made to annotate landmarks
on CT scans of new specimens using a machine learning algorithm

applied to an initial training set created by experts (Bromiley et al.
2014), or using registrations of whole surfaces or volumes (Rolfe et al.
2011), sometimes coupled with multiple atlases, allowing precision
comparable to manual editing (Young and Maga 2015). Most
approaches are actually based on the dense registration of whole
surfaces or volumes and therefore encapsulate homologies at the level
of the whole structure. In such phenotyping protocols, constraining
the registration of the whole structure with some expert annotation
improves point correspondence by ensuring homologies of some
anatomical features (McCane 2013). The semilandmark approach
(Bookstein 1997; Gunz et al. 2005; Gunz and Mitteroecker 2013)
employs such points on curves and surfaces for which homology
conditions are relaxed. These landmarks do not have a one-to-one
correspondence but quantify anatomical regions where precise man-
ual annotation is not feasible or possible. The technique uses true
landmarks to anchor the homology, and the optimal placement of
these points is obtained by sliding them locally on the surface until
either the Procrustes distance or the Bending energy is minimized
(Gunz and Mitteroecker 2013).

Here,wewant torevisit someof theQTLstudiesofmandibular shape
in mice using landmarks acquired in 3D.We chose the mandible as our
structure of interest because it is a well-studiedmodel system, on which
several QTL mapping studies of geometric shape have already been
conducted in the past in inbred intercrosses (Klingenberg et al. 2001;
Leamy et al. 2008). Since none of these studies have associated 3D data
for their samples, we turned to a newmouse backcross between A/J and
C57BL/6J that we recently reported (Maga et al. 2015). We wanted
to reassess mandibular shape genetics using this new dataset and 3D
phenotyping, and evaluate the gain of information (if any) from the
third dimension, given that mandible flattening seems at first an

Figure 1 Mandibular 3D surface, landmark, and semilandmark
templates. Light blue and gray dots are manual 3D landmarks. Small
green dots represent the semilandmark template. The two gray
landmarks and the small purple dot were used as the initial reference
plane for 2D flattening prior to optimization.
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acceptable compromise for large-scale study. As a secondary goal, we
wanted to increase the phenotypic coverage of the mandible using
a template of semilandmarks that was tied into the already collected
expert landmarks and assess whether any further benefit was obtained
from dense phenotypic coverage.

MATERIALS AND METHODS

Experimental design and statistical shape analysis
All aspects of the experimental design, genotyping, the rationale for
mapping shape loci using multivariate techniques, and a complete
development of the multiple QTL mapping approach used are detailed
in an open paper (Maga et al. 2015). Briefly, skulls of 433 (A/J·C57BL/
6J)·A/J 28-day-old individuals were microCT scanned at 18 mm spa-
tial resolution, and genotyped from liver tissue at 882 informative
autosomal SNPs using the Illumina medium density linkage panel.
After phenotyping and removing six incomplete specimens (see below
for specific details relative to the mandible), a full generalized Procrus-
tes analysis (Dryden and Mardia 1998) was performed on these 3D
landmarks using the R/Morpho package (Schlager 2015a), and then
multivariate shape QTL mapping was done using the R/shapeQTL
package (Navarro 2015) of R statistical software (R Core Team 2015).
All animal protocols were approved by the University of Washington’s
Institutional Animal Care and Use Committee.

3D phenotyping: manual landmarks and simulated
2D phenotyping
Thirteen 3D landmarks from the right mandible (Figure 1) were ac-
quired twice from 3D renderings of original image stacks of the com-
plete skull using 3D Slicer (Fedorov et al. 2012, http://www.slicer.org).
The sets were averaged as the best estimate of the landmark location.
These landmarks correspond to the classical set of�15 landmarks used
in previous studies of mouse mandible genetics (Atchley et al. 1985;
Klingenberg et al. 2004; Leamy et al. 2008). We initially acquired more
landmarks but we found some gross or systematic errors on several
of them, which were consequently removed. On the remaining set
of 13, no systematic error between landmarking sessions was found
(F32;821 ¼ 1:28; p ¼ 0:14), and the percentage of measurement error
was 4.38% and ranged from 2.6–7.55% per landmark.

For a fair comparisonwith existing results based on2D imaging, and
tobetter evaluate thegain fromthe thirddimension independentlyof the
gain of denser genotyping, we artificially flattened the mandibular 3D
landmarks. To do that, we first aligned each mandible to its main axes,
then chose three landmarks to start (dark gray and purple landmarks in

Figure 1): the lower point of the angular process, the lower end of
symphysis, and an additional landmark (purple landmark) at the top
of the inner ridge meeting the molar alveolus. Positions of the first two
were refined iteratively based on the innermost vertex of themesh along
the normal to the plane they defined with the third landmark. These
three landmarks defined an approximate natural plane on which the
mandible would lay. All 13 landmarks were then orthogonally pro-
jected according to the normal to this plane.

3D phenotyping: semilandmarks
Right mandibles were segmented from the articulated heads. Image
voxel resolution was reduced from 18 mm to 36 mm to make further
image processing and computations more feasible. We applied a global
threshold to remove nonbone material followed by a watershed algo-
rithm to fill any gaps, since watertight meshes are critical for generating
semilandmarks on the bone surface. A 3DGaussian filter with s ¼ 0:2
was applied to reduce the noise in voxel data. Along this process, six
specimens were identified with incomplete mandible scans and re-
moved from the analysis.

Because the manual landmarks were annotated on the original full-
resolution, articulatedmouse heads, small differencesmay exist between
the 3D surface and the 3D landmarks due to the image processing
pipeline employed. Therefore, we back-projected the averaged land-
marks onto the mandibular surface based on the shortest Euclidean
distance between the landmark and the 3Dmesh. This ensured that the
manual landmarks also existedon the hemi-mandiblemeshes generated
for this analysis.

A template of uniformly distributed semilandmarks was generated
using poisson-disk sampling on the closest individual to themean shape
of 3D landmarks. As an alternative, targeted templates using curves and
patches may have been developed to focus on specific anatomical
features like ridges on the surface (e.g., masseteric ridge) or borders
(Swiderski and Zelditch 2013; Anderson et al. 2014), but our aimwas to
model the bone surface densely. Points lying on the incisors or molars
were also manually identified and removed from the template. In the
end, we retained 579 semilandmarks (green landmarks in Figure 1) in
addition to our 13 expert-annotated landmarks. This template was
transferred onto new samples by thin-plate splines based on these 13
landmarks.

Semilandmarkswere further slided based on the bending energy and
back-projected on the actual mesh surfaces after the sliding relaxation
(Gunz et al. 2005). Both the expert-annotated landmark and the semi-
landmark data were subjected to two independent full GPA. The de-
scribed procedure made use of the vcgSample function from the Rvcg

n Table 1 Study design and descriptive statistics for confidence interval on QTL positions

Studya N Land Dim N Mrk N Ind Ageb Cross N QTL Q1c Median Q3
P

Present-2D 13 2D 822 427 28 N2:(B6·AJ)·AJ 17 6 9 20 276.8
Present-3D 13 3D 882 427 28 N2:(B6·AJ)·AJ 19 7 9 17.3 271.2
Present-3D Semiland 13 + 579 3D 882 427 28 N2:(B6·AJ)·AJ 23 2.5 5.1 9.2 168.9
Klingenberg et al. (2001) 5 2D 76 476 70 F2:LG· SM 23 12 16.9 29.6 477
Klingenberg et al. (2004) 16 2D 76/96 954 70 F2:LG· SM 32 8.5 13.3 24 560
Leamy et al. (2008) 15 2D 353 374 + 1515 70 F2+F3:LG · SM 37
Pallares et al. (2014) 14 3D 145,378 178 63-84 F1:wild-caught 10 0.04 0.09 0.12 0.9

N Land, ; Dim, ; N Land, number of landmarks; Dim, dimensionality; N Mrk, number of markers; N Ind, number of individuals; N QTL, number of quantitative trait loci;
Q1, first quartile of the confidence intervals; Q3, third quartile of the confidence intervals; S, sum of the confidence intervals etc.
a

For the Klingenberg studies, QTL with markers now known to be syntenic were either removed or replaced with the central position of the QTL when possible. See
text for further details.

b
Age in d.

c
Intervals are given in cM according to the current genetic map (Cox et al. 2009) and were converted from earlier map or physical position using the Jackson
Laboratory’s Marker Query Tool.
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package (Schlager 2015b) and the closemeshKD, placePatch, and
3Dslider functions of the R=Morpho package (Schlager 2015a).

Shape QTL mapping
The effect at the locus l was estimated using the multivariate linear
model yi

�
�Mi � N qðmþP

cxicbc þ
P

jpijbj; SÞ, where xic is the value
of the covariate c and pij ¼ Prðgi ¼ jjMiÞ is the probability of the QTL
genotypes given the flanking markers M for individual i. These prob-
abilities were computed using R=qtl (Broman et al. 2003). The effects b
are the q-dimensional effect of the covariate c (i.e., log of the centroid
size, gender and direction-of-cross) or of the genotype j representing
the direction and magnitude of the shape change of the overall config-
uration of landmarks within the shape space.

A forward/backward algorithm was used for multiple QTL model
searching. This procedure drops and refines positions of additive QTL
without any prior knowledge of their number per chromosome, and
compares models based on a penalized LOD score (Broman and
Speed 2002; Broman and Sen 2009; Manichaikul et al. 2009),
pLODðgÞ ¼ 2 log10p2Tjgj. The forward search was repeated up
to a model g including 50 QTL. The penalty T for each additional
QTL was evaluated using the 1000 permutations approach (Churchill
and Doerge 1994). One classic inferential approach in geometric mor-
phometrics uses the sum of the residual sum of squares (Goodall 1991).
Here, pLOD scores are derived from the Pillai’s trace, a classic multi-
variate statistic, which makes use of covariances and is proven to be
fairly robust in a variety of situations (Olson 1974, 1976; Tabachnick
and Fidell 2013). However, it is important to note that recent
approaches to decipher the basis of adaptation or speciation using
RAD-seq or similar techniques (see Jones and Good 2016, for a review)
in nonmodel organismsmay have fairly small sample sizes compared to
the dimensionality of phenotypes (e.g., Huber et al. 2015). Such n � p
studies might gain in robustness by focusing just on variances, drop-
ping the cost of estimating covariances, as suggested also in other con-
texts (Adams 2014). Our multivariate approach for mapping multiple
QTL is very similar to the one developed for the mapping of function-
valued traits, with pLOD based on the sumof the residual sumof squares
(Kwak et al. 2014; Gray et al. 2015). Bayes credible intervals of QTLwere
computed from the 10LODðuÞ profile (Dupuis and Siegmund 1999; Sen
and Churchill 2001; Manichaikul et al. 2006).

The magnitude of shape changes associated with each QTL was
expressedfirst in units of Procrustes distance as the normof the additive

vector
�
�
�bj

�
�
� ¼ ðbjb

t
jÞ0:5 (Klingenberg et al. 2001; Workman et al.

2002). Also, the amount of variation accounted for, given all the other
QTL and covariates, was reported as the percentage of total Procrustes
variance (%SST in Supplemental Material, Table S1 and Table S2),
a statistic routinely used withmultivariate linear models (e.g., Monteiro
1999). We also reported the effect size as a percentage of variance
accounted for in the specific direction defined by the additive vector
bj in the shape space (%SS proj Scores in Table S1 and Table S2). For
that, we defined a new shape variable, v ¼ Ybt

jðbjb
t
jÞ20:5, correspond-

ing to the shape variable most associated with the shape changes de-
fined by bj and containing both the effect and the residuals in that
specific direction (Drake and Klingenberg 2008). The proportion of
those projection scores explained by the QTL j is then the ratio of
variance between the EðvjpjÞ and the scores v. Its expectation with

backcross and unlinked QTL is h2j ¼
P

kb
2
j;k

bjðBtBþ 4 ·SeÞbt
jðbjb

t
jÞ21.

QTL-based Gmatrices were compared across the three approaches
using only the xyðzÞ-coordinates of the 13manual landmarks that were

common across the set of matrices to be compared. Many approaches
for matrix similarity have been used in the literature for comparing G
matrices across populations (e.g., Aguirre et al. 2013; Teplitsky et al.
2014) or between levels of variation (see for example Debat et al. 2009,
for contrasting canalization and developmental stability). Overall dis-
tance betweenGmatrices was assessed with the root Euclidean distance
(Dryden et al. 2009), dHðG1;G2Þ ¼

�
�
�G1=2

1 2G1=2
2

�
�
� with the matrix

square root G1=2 ¼ UL1=2U21 where ULU21 is the spectral decom-
position of G. Then, the similarity between gmax was measured as their
angle, which was compared to 100; 000 pairs of random vectors to
assess the significance of whether two gmax were more similar than
pairs of random vectors (Klingenberg and Leamy 2001). To extend this
comparison beyond gmax and pairwise comparisons, we computed the
common subspaceH across the threeG (Krzanowski 1979). Thematrix
H ¼ P3

i¼1AiAt
i , whereAi corresponds to the first qi eigenvectors ofGi.

We chose qi based on the cumulative amount of variance accounted for
($ 90%). Briefly, the spectral decomposition ofH provided axes max-
imizing the similarity amongmatricesD ¼ P3

i¼1cos
2di, where di is the

angle between an eigenvector and the subspace Ai. An upper bound of
D is the number of matrices to compare. Angles di quantified how
different each eigenvector of H are from the qi eigenvector of Gi

(e.g., see Aguirre et al. 2013 for a more detailed treatment). Finally,
we compared the three datasets based on their difference in terms of

Figure 2 Principal component (PC) analyses of mandible shape
variation. (A) Percentage of variance explained by the first 22 PCs from
phenotypic covariance matrices together with the visualization of
shape changes associated with PC 1 from 3D landmark and semiland-
mark datasets. In the visualization, darker colors (red or blue) represent
interpolated shape changes diverging from the mean shape. Green
color represents unchanged shape of the mandible compared to the
mean shape. (B) Percentage of variance explained by the first 22 PCs
from G matrices based on discovered QTL (quantitative trait loci).
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heritability.Withmultidimensional traits, heritability is alsomultidimen-
sional (Klingenberg 2010), meaning that beyond an overall amount of
heritable variance there are also directions across the shape space
accounting for a varying degree of heritable variation. The multivariate
analog to h2 is GP2, where 2 stands for the Moore-Penrose generalized
inverse. Its spectral decomposition ULU21 provided these directions in
the shape space maximizing heritability (Klingenberg and Leamy 2001).

These shape features uh as well as any eigenvector of G, P, or QTL
effects bj might then be amplified and visualized as a colorized 3D
surface using thin-plate spline mapping from the mean shape and its
mesh model, and by computing the signed distance between these
extrapolated meshes. This visualization procedure made use of tps3d
andmeshDist functions from the R=Morpho package (Schlager 2015a).

Comparison with previous mapping data
Mandible shapeQTLhave already been assessed in several studies using
2D landmarks on F2 mice from a LG/J· SM/J intercross (Klingenberg
et al. 2001, 2004) or on F3mice from the same cross (Leamy et al. 2008).
Despite missing confidence intervals for the discovered QTL, the latter
was kept for comparison, because it represented a follow-up study on
the former two with more markers and more individuals. A genome-
wide association study using the first generation of wild-caught mice
from a hybrid zone (Pallares et al. 2014) was also included in compar-
isons. It differs from the three others by its use of outbred hybrid mice,
3D data, but smaller sample size (Table 1).

The closest proximal and distal markers given for the confidence
intervals in earlier studies were converted to the current genetic map
(Cox et al. 2009) using the Jackson Laboratory’s Marker Query Tool.
The SNPs used in the mapping from F3 of the LG/J· SM/J intercross
(Leamy et al. 2008) were converted to the Cox map using the Mouse
Map Converter tool of the Jackson Laboratory using the SNP IDs. Six
SNPs were not recovered from their IDs in the conversion. Genomic
positions in the NCBI build37 for these SNPs were known from the
updated heterogeneous stock data (Shifman et al. 2006; Valdar et al.
2006). They were then converted from those NCBI build37 genomic
coordinates to the Cox map using the Mouse Map Converter tool. The

genomic positions of loci discovered in Pallares et al. (2014) were converted
from the GRCm38 coordinates to the Cox map using the same tool.

Some markers used in LG · SM studies (Klingenberg et al. 2001,
2004) are now known to be syntenic and do not localize to a specific
location in the genome. Overall, three QTL were removed from the
comparison, and left or right positions of the confidence interval were
imputed with values from the central position for three others. The
central positions of two other QTL were treated as missing because the
new map positions fell outside the confidence interval, and the closest
flanking marker was several dozen cM away. All these imputations led
to slightly underestimated descriptive statistics on confidence intervals
from previous studies. Such bias is nonetheless against any evidence of
gain in the precision of QTL locations with more recent data.

Data availability
Genotypes and phenotypes are available from File S1 as a cross object
readable by R=qtl or R=shapeQTL.

RESULTS

Mandible shape variation
Variation from expert-annotated 3D landmarks was dispersed with 22
outof32principal components (PC)withavariancehigher than1%,and
explaining 94% of the total Procrustes variance. Two first PCs explained
about 13% each (Figure 2A). Interestingly, the interpolated shape
changes (using thin-plate-spline) associated with PC1 show strong
correlated deformations in muscle insertion regions where no
landmarks are digitized to actually capture genuine variation in
these regions. Shape variation in 2D was dispersed with 18 out of 22
PCs with a variance higher than 1%, explaining 97% of the total
Procrustes variance and the first three PCs explaining between 10–
14% each. Based only on the xy-coordinates of the 13 landmarks,
major axes of variation are more similar than two random vectors
(a ¼ 25:3�; p, 1025) once the permutation between PC1 and
PC2 on 3D landmarks, which account for almost the same amount
of variance, is controlled.

Figure 3 Percentage of shape changes within the xy-plane (black) and along the z direction (gray). The proportion of shape effects b that lie along
the mth dimension (m= 1, 2, or 3) is the sum of the squared effects over the k landmarks on the mth dimension normalized by the norm of the
effect,

Pk
i¼1b

2
i;m=kbk. The figure may be understood as the proportion of changes that are embedded in the flat plane (xy) or that get out of this

plane (z). Such parametrization is sensical here, despite the fact that shapes are invariant to rotation by definition, only because they were
specifically oriented according to this specific coordinate system. (A) Principal components (PC), covariate, and QTL (quantitative trait loci) effects
for 3D landmarks. (B) Principal components, covariate, and QTL effects for semilandmarks. Covariates are noted CS for the log of the centroid size,
X for the direction of the cross, and G for gender.
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Semilandmark variation was most dispersed with 426 nonnull
eigenvalues fromwhich 19 PCs, with a percentage of explained variance
higher than 1%, explained 79% of the total Procrustes variance, the first
two explaining 13% and 14% each.We chose to use the first 71 PCs that
accounted for 95% of the total variance. Based only on fixed landmarks,
the main axis of phenotypic variation is very similar to PC1 from 2D
landmarks (a ¼ 40:9�; p ¼ 2 · 1025), or to PC2 from the 3D land-
marks (a ¼ 26:6�; p, 1025).

Covariate analysis
The main effects of centroid size, gender, and directionality of the cross
on mandible shape were found to be significant (p , 0.0001) but no
significant interactions among them were found. Altogether, they
explained 4.5% of the total Procrustes variance. The direction-of-cross
was the major effect in this sample, explaining 2.5% of the total
Procrustes variance (Table S1). Covariate results with 2D shapes were
similar to the 3D data (Table S1). Results from the multivariate linear
model of the three covariates were similar to those from the 3Dmanual
landmark only, with the covariates explaining 5.5% of the variance
altogether.

2D embedding of shape variation
3D shapes from manual landmarks were oriented according to the
reference 2D plane allowing the decomposition of each effect according
to the antero-posterior and bucco-lingual axes (Figure 3). The variation
of the 3D landmarks on each PC in the bucco-lingual direction is highly
variable (light gray amount in Figure 3). However, major axes of var-
iation (PC1 to PC10; �73.6% of the total Procrustes variance) are
embedded mainly in the antero-posterior/dorso-ventral plane of the
mandible (black and dark gray), with very little of this variation in the

bucco-lingual direction (4.4%). Accordingly, only 9–13% of covariate
effects (size, sex, or direction-of-cross) were along this bucco-lingual
axis. Shape variation from the semilandmarks was again mostly
embedded in the flat plane with only 5.9% of the variation in the
bucco-lingual direction, and covariate effects were mostly within
this plane (�90% of the effect).

QTL mapping of mandible shape
In all three cases (2D, Manual 3D landmarks, and Semilandmarks), the
three covariates (log of the centroid size, gender, and direction-of-cross)
were included in the QTL mapping as additive covariates. Multivariate
QTLmapping identifiedbetween 17QTL for 2D landmarks, 19QTL for
3Dmanual landmarks, and 23 QTL for the 3D semilandmark analysis.
All autosomesbut two(chromosomes18and19)harbor at least one, and
in some cases up to three, QTL (chromosome 11) depending on the
phenotypingmethodused. Summaries of the positions of the discovered
QTL (location, nearest marker, and the confidence intervals) are pro-
vided in Table 2 for semilandmarks. Summaries for all three cases are
provided in Table S2 and plotted on Figure 4. The median widths of the
confidence intervals were 9 cM for both 3D landmarks and their 2D
projections, and 5 cM for the semilandmark dataset, and three quarters
of the confidence intervals were smaller than 17.3 cM, 20 cM, and
9.2 cM, respectively, for these three datasets (Table 1). Thirteen QTL
were replicated across the three approaches, all 2DQTLwere replicated
in 3D but some were split in two with the semilandmark data or were
not captured, eight were only mapped with the semilandmarks, and
two only with the 3D landmarks (Figure 4 and Table S2).

Effect sizes of QTL were small (�1% of total Procrustes variance;
Table S2) but explained on average�12% of the variance in the specific
direction defined by the QTL effect (regression projection scores).

n Table 2 Closest SNP, confidence interval, and protein-coding gene content of semilandmark QTL

QTL Closest SNP Chr Left Pos Right Replic. nPCGa nCG.2Db nCG.3D CG.Semic

SH1 gnf01.075.385 1 42.33 43.62 44.33 2D, 3D 56 4
SH2 rs3722345 2 51.09 51.09 60.54 2D, 3D 243 2 2
SH3 rs6274061 3 12.01 20.01 21.01 81 2
SH4 rs3676039 3 59.01 65.01 77.01 115 2 Lef1
SH5 rs3711477 4 52.01 52.20 53.01 3D 12 1
SH6 UT_4_132.137715 4 81.01 83.01 84.01 44 Rere
SH7 rs13478154 5 13.50 15.71 17.50 2D, 3D 75 6 9 Shh, Drc1, Ift172
SH8 rs13478388 5 43.50 52.50 56.50 2D, 3D 345 12 6 Ambn, Fras1, Prkg2, Dmp1, Idua,

Fgfrl1, Mn1, Kctd10
SH9 CEL-6_86289708 6 41.55 43.00 43.00 2D, 3D 3 4 3
SH10 rs3658783 6 84.00 88.00 89.28
SH11 rs13479427 7 43.05 55.02 57.20 477 Akap13, Kif7, Serpinh1, Folr1
SH12 rs6386110 8 22.38 25.52 27.52 2D, 3D 69 1 7
SH13 rs3721056 9 43.10 44.47 71.10 2D, 3D 366 2 2 Atr, Ryk
SH14 rs3686911 10 3.03 3.18 9.03 48
SH15 mCV24217147 10 67.03 70.03 71.12 2D, 3D 24 3 1
SH16 rs3700830 11 12.08 16.08 17.08 52
SH17 rs13481127 11 48.08 49.08 54.08 2D, 3D 116
SH18 rs3672597 11 82.08 84.08 86.08 2D, 3D 106
SH19 rs13481321 12 6.90 7.99 8.95 3D 44
SH20 rs3693942 13 25.00 26.00 26.52 2D, 3D 36
SH21 CEL-15_36490596 15 13.68 13.68 14.99 2D, 3D 32
SH22 rs4204106 16 33.03 48.03 53.31 2D, 3D 177
SH23 rs6298471 17 16.03 18.14 21.14 314

QTL, quantitative trait loci; Chr, chromosome; Pos, position; Replic, replication, nPCG, number of protein coding genes; nCG, number of candidate genes; SH, shape
etc.
a

Number of protein-coding genes in the interval.
b

Number of candidate genes annotated for “mandible” in the MGI databases in the QTL confidence interval from 2D or 3D datasets.
c

Candidate genes annotated for “mandible” in the MGI databases in the QTL confidence interval for the semilandmark analysis. Candidates with nonsynonymous or
splice-site variants between AJ and C57BL/6J are indicated in bold.
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Replicated QTL between 2D and 3D data explained a similar percent-
age of total Procrustes variance (Wilcoxon test: V16 ¼ 57; p ¼ 0:82),
but 3D effects explained a significantly greater percentage of vari-
ance in the specific direction of the QTL (projection scores) than 2D
effects (Wilcoxon test: V16 ¼ 153; p ¼ 7:63 · 1026). According to
shape variation and covariate effects, QTL act mainly in the 2D
plane (Figure 3). However, the contribution of the third dimension
may be as high as 30% for some QTL with the manual landmarks or
the semilandmarks (Figure 3). It is important to note that these QTL
were not detected in the 2D analysis (Table S2). Visualization of
QTL effects from 3D landmarks only or semilandmarks are pro-
vided in supplementary Figure S1 and Figure S2.

Comparison of QTL-based G matrices
Altogether, theseQTLaccounted for14.6%(2D),15.1%(3D), and16.9%
(semilandmarks) of the total Procrustes variance. From those, 12.8%
(3D) and 14.4% (semilandmarks) of the genetic variance are along the
third dimension. Overall differences among the three G2k matrices
measured by the root Euclidean distances dH are low, the semilandmark
matrix appearing as the most different (dSemi2 2D=3D ¼ 0:012 and
d2D2 3D ¼ 0:002). In agreement with this observation and similarly
to Pmatrices, Gmatrices presented a very similar eigenvalue profile
among the three approaches (Figure 2) with gmax explaining about
20% of the variance. Here, there was also a permutation between the
two first PC in the 3D landmarks compared to the two other

datasets. Once this permutation was controlled, these three
gmax were more similar than random vectors ða2D=3D ¼ 18:2�;
p, 1025; a2D=Semi ¼ 61:4�; p ¼ 0:012;a3D=Semi ¼ 69�; p ¼ 0:025Þ
based only on the xy-coordinates of the 13 fixed landmarks for the
two first comparisons and on xyz-coordinates for the last one.

The Krzanowski’s common subspace analysis confirmed these
observations. Angles between the first seven eigenvectors of the com-
mon subspaceH and the q PCs accounting for 90% of the variance for
each matrices (q ¼ 9 for 2D landmarks or 10 for the G2k based on 3D
landmarks or semilandmark datasets) were small (d ranging from 1.6–
16�). Their associated eigenvalues were very close to their maximum
value of three (D ranging from 2.997–2.859). This means that the
common subspace may be almost perfectly recovered from linear
combinations of the qi eigenvectors of any of the G2k matrices. The
semilandmark G2k matrix appeared again to be the quickest to di-
verge, underlying the additional information we get from semilandmarks
even if they were not explicitly taken into account in the construction of
the common subspace.

Multivariate heritabilities are systematically greater with 3D than
2D data (Figure 5) but in the same order ranging from 0.55–0.01.
Semilandmarks show dimensions with a heritability ranging from
0.76–0.15. The shape changes associated with the most heritable
dimension were very different to the one observed on 3D landmarks
only (Figure 5). Such discrepancies seem easily explained as the
strong changes appeared to map on mandible surface and ridges
where no manual landmarks could be easily captured.

DISCUSSION
Previous studies using QTL mapping of mandible size and shape in
mouse have relied typically on 2D landmarks and sparse sampling of the
genome using microsatellite markers (Klingenberg et al. 2001, 2004) or
a few hundred SNPs (Leamy et al. 2008). Our primary purpose in this
study was to validate QTL responsible for the variation in mandibular
shape observed in mice using 3D phenotyping with denser genotyping
than previously attempted, and assess the gains (if any) from the con-
sideration of the third dimension.

We detected marginally fewer QTL than studies based on the
LG/J· SM/J intercross (Table 1). This might be expected as we fitted
a model with all QTL simultaneously, whereas the LG/J· SM/J inter-
cross studies modeled the genetics of the trait at the chromosome-wide
level and used sample sizes about three times bigger. Effects of sample
size and/or of allele frequencies seem striking in the study of Pallares
et al. (2014), where only 10 loci were discovered but with greater preci-
sion, thanks to their use of an outbred population and a dense SNPmap.
Overall, about half of the 23 QTL we discovered had already been
reported in the literature. Only one region on chromosome 15 seemed
to be replicated across the three different crosses (Figure 4). Another
GWAS locus on chromosome 16 was replicated in our cross. Two QTL
previously detected with imprinting due to maternal genetic effects
(Leamy et al. 2008) were also replicated here. At the time of the sub-
mission, a 3D geometric morphometric study using about 700 labora-
tory outbred mice, 80,000 SNPs, and univariate association mapping of
themain principal components was published (Pallares et al. 2015). They
mapped seven loci for mandible shape with great precision and their
main finding, which was related to theMn1 gene, seems to be replicated
here based on gene content (SH8 on chromosome 5 in Table 2).

It may initially appear that not much difference exists between
the mapping results based on 3D manual landmarks and their 2D
projections, due to their significant overlap (Figure 4). However, the
benefit of adding the third dimension is demonstrated by the reduction
in the confidence intervals of the QTL estimates. The median CI

Figure 4 QTL from 2D, 3D, and semilandmark analyses. Results from
earlier studies from the LG/J· SM/J intercrosses (Klingenberg et al.
2001, 2004; Leamy et al. 2008) and from the Pallares et al. (2014)
GWAS (genome-wide association study) are plotted in the gray boxes.
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estimate for our 2D projection results was 11 cM. Yet, when we con-
ducted the mapping on 3D landmarks, extreme CIs were marginally
reduced and median CI was down to 6.3 cM when we used semiland-
marks. The difference was even more striking when we considered the
total length of the QTL intervals, which dropped by 120 cM, represent-
ing a 38% drop in the number of known protein coding genes with 75%
of QTL covering at most 146 protein coding genes (358 with 2D and
271 with 3D landmarks). The 2D projection data yielded very similar
results to the one of 13.3 cM obtained from the remaining 24 QTL
reported in earlier studies (Klingenberg et al. 2001, 2004) despite
a marked difference in molecular marker density (10-fold).

The consideration of the thirddimension leads to the discovery,with
3D landmarks, of two additional QTL on chromosome 1 and 14, both
QTL covering a few mandible-annotated genes (Disp1, Hhat, Ifr6, and
Kat6b). Adding one dimension to each landmark (i.e., 10 independent
dimensions to the shape space) increases detection power. This increase
in power is not just related to bigger effect sizes or higher dimension-
ality, which could bemore costly than useful in some cases (Healy 1969;
Adams 2014). The two additional QTL actually have 26% and 32% of
their effects along these additional dimensions. Thus, the specific
consideration of the third dimension in the mapping is clearly very
informative in these cases. The relaxed constraints on homology of
semilandmarks and their ability to densely model the surface of bone
led to the discovery of eight additional QTL. Three of them show
between 20–30% of their effect on the third dimension. Three of those
additional QTL cover one to four mandible-annotated candidate genes:
Lef1, Rere, and in the same QTLAkap13,Kif7, Serpinh1, and Folr1. The
overall additive genetic variation (G) is consistent between 2D and 3D
data, both in terms of the amount of total variation captured and the
directionality of major variations. Beyond an overall similarity with
other data, semilandmarks capture original shape features related to
the bone surface, and those features drive the pattern of multivariate
heritability (GP2).

Multivariate approaches have been repeatedly shown to be
more powerful than analyzing individual PCs (or univariate traits)
independently in various contexts (see for instance in GWAS,
Galesloot et al. 2014; Gao et al. 2014; Stephens 2013). However,
this univariate PC approach is commonly used, at least for oper-
ational reasons (e.g., Pallares et al. 2014, 2015; Percival et al. 2016,

with geometric morphometric data). An incidental result of our
study is a plea for the use of a fully multivariate approach with
shape data, not only because shape is a single multidimensional trait
(Klingenberg and Gidaszewski 2010; Collyer et al. 2015). Major phe-
notypic PCs appear to have only minor components of variance on
the third dimension, whereas some QTL present up to a third of their
variation in that specific direction. Prior selection of shape variables
based on phenotypic PCA will reduce effect sizes by a third for those
QTL, thus reducing power. We have chosen to reduce the dimension-
ality of the semilandmark data using such a technique. However, we
kept most of the total variance (95%) while discarding a large amount
of nonnull dimensions (355). Our assumption is that the remaining
variance was only random variation. Such noisiness is inherent to the
registration process of semilandmarks. This assumption leads us to
not reestimate the effects and their associated effect sizes on the
complete shape, as doing so will only marginally change our esti-
mates. However, this reestimation of QTL effects on the complete
shape may be good practice when the QTL detection is, for some
reason, done on a strongly reduced shape space (Pallares et al.
2014, 2015; Liu et al. 2014; Zeng et al. 2000; Langlade et al. 2005;
Mezey et al. 2005; Franchini et al. 2013). Major QTL may be detected
with the first PCs only, but they also have pleiotropic effects on
additional dimensions.

In conclusion, the congruence of our results pleads for robust-
ness of our knowledge on the genetic architecture of the mouse
mandible, built over a few decades and initially based on 2D
imaging techniques. There are many benefits of performing 2D
morphometrics in large phenotyping programs, which can be
summarized as the simplicity of the techniques and the time
saved, but they come at the price of accuracy. Despite inherent
difficulties and workloads that may impede the broader use of 3D
techniques, information can be gained even from fairly flat struc-
tures like the mouse mandible. Once these technical and cost
difficulties have been overcome, it appears that making themost of
new technologies by opting for denser phenotyping is worth the
supplementary technical expertise that is required, and may pro-
vide some new insights on the genetics of shape.
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