
Biological Journal of the Linnean Society, 2004, 83, 243–260. With 5 figures

© 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83, 243–260 243

Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2004? 2004
832
243260
Original Article

EFFECTS OF MORPHOMETRIC DESCRIPTOR CHANGES 
N. NAVARRO 
ET AL.

*Corresponding author. 
E-mail: nicolas.navarro@u-bourgogne.fr

Effects of morphometric descriptor changes on statistical 
classification and morphospaces

NICOLAS NAVARRO1,*, XAVIER ZATARAIN2 and SOPHIE MONTUIRE1,3

1UMR CNRS 5561 – Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 6 bvd 
Gabriel, F-21000 Dijon, France
2Ecole des Mines, 60 bvd St Michel, F-75006 Paris, France
3EPHE, Université de Bourgogne, 6 bvd Gabriel, F-21000 Dijon, France

Received 4 April 2003; accepted for publication 26 January 2004

Ten morphometric descriptors (five pairs of form and shape parameters) are used to describe the complex morphology
of the first lower molar of two morphologically similar species, Microtus arvalis and M. agrestis. These descriptors
are derived either from linear measurements or from outline analysis. The effects of these different descriptors on
classical analysis as used in biology or palaeobiology are explored. First, the reliability of results in statistical clas-
sification is assessed. All of the descriptors discriminate well between the two species. The initial morphometric
scheme (linear or outline) does not induce marked differences in statistical classification and the major discrepancies
are between standardized and non-standardized versions of descriptors, and between amplitude- and coefficient-
based or linear-based descriptors. Subsequently, the similarity of morphospaces based on partial least squares anal-
ysis and of intraspecific variance (estimated from the morphospace analysis) are observed. This is done within a mor-
phospace-disparity framework and procedures used here for testing are directed at this research area. Similarities
between morphospaces are relatively high. In this case, the initial morphometric scheme is a major factor inducing
dissimilarity. However, the patterns of intraspecific dispersion inferred from morphospaces are roughly similar.
Major differences in results correspond to the two classes of form or shape descriptors. Similarity of intraspecific
variance is obtained when standardized descriptors are used (except for amplitude-based descriptors); conversely,
dissimilarity is obtained when non-standardized descriptors are used. In many cases, the results of the various anal-
yses are robust despite changes in descriptor. Moreover, the developmental pathway of vole teeth can frequently
explain major dissimilarity or even similarity. © 2004 The Linnean Society of London, Biological Journal of the
Linnean Society, 2004, 83, 243–260.

ADDITIONAL KEYWORDS: complex series – elliptic series – Fourier – linear measurements – Microtus –
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INTRODUCTION

The aim of a morphometric study is to recover and
recombine information in such a way as to obtain the
most accurate biological insights. This information
may be highly disparate for a number of reasons. The
relative amounts of available and unavailable infor-
mation are dependent on the system of description
(e.g. distances, landmarks, outlines), which in turn
involves three types of tool (traditional, geometric and
outline morphometrics). The structure of a descriptor

and the quantity of information contained in it - a
combination of parameters obtained from the initial
mathematical processing of extracted data - greatly
affect the quality and quantity of morphological
information.

The efficacy of the tools, or of the processing tech-
niques which those tools comprise, can be compared.
However, as the information is not structured in the
same way, relationships between descriptor parame-
ters may have varying degrees of complexity. This
involves different approaches to the proper con-
straints of multivariate analyses for the recovery and
recombination of the information that is initially
available. Ultimately, the information recovered and
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used in subsequent analyses (e.g. evolutionary pat-
terns) may or may not vary between tools and the
same tool may produce different results.

Choice of descriptor is a crucial step in any biologi-
cal or palaeobiological study based on morphology,
since all subsequent analyses depend on this and any
change can potentially modify the results. A large
array of morphometric descriptors (e.g. residuals of
Procrustes adjustment, Fourier coefficients, Eigen-
shape values) are available for processing shape (e.g.
Rohlf & Archie, 1984; Rohlf, 1986; Lohmann & Sch-
weitzer, 1990; Marcus et al., 1996; Lestrel, 1997a;
MacLeod, 1999). The choice of any particular descrip-
tor may be difficult and is often somewhat arbitrary.
Traditional descriptors (i.e. linear measurements) are
often abandoned in favour of what are considered a
priori to be more efficient methods of geometric mor-
phometrics or outline analysis. This is due to the fact
that the intrinsic quality of the traditional descriptors
varies according to the groups and problems
addressed.

Common biological and palaeobiological applica-
tions based on morphology are frequently used as a
first step in multivariate methods such as discrimi-
nant function analysis or principal components anal-
ysis (PCA). One common example of discriminant-
based techniques is the method whereby a clearly
identified extant sample is used in order to make blind
determinations of fossil individuals. Another is where
the necessary information for correct classification of
extant species is unavailable, e.g. particular morpho-
logical characters, character associations, genetic
information (e.g. Airoldi, Flury & Salvioni, 1995).

One example of PCA-based techniques is the dispar-
ity framework used in macroevolutionary studies (e.g.
Foote, 1990, 1999; Eble, 2000a, 2002). This method-
ological framework (morphospace disparity) can easily
be extended to microevolutionary studies such as
ecophenotypism or species/lineage evolution. The
robustness of results vis-à-vis descriptor changes (i.e.
modification of the accuracy of the taxonomic determi-
nation, stability of the observed pattern) will need to
be checked, but should allow workers to make an
objective choice or at least alert them to the potential
for error.

In this study we explore how changes in descriptor
affect the results obtained. Our study subjects are the
two extant vole species Microtus arvalis and
M. agrestis (Arvicolinae, Rodentia). Arvicolines (voles
and lemmings) are a highly diversified Holarctic
rodent group comprising 143 extant species (Musser &
Carleton, 1993) whose evolutionary radiation began
5.5 Myr ago (Chaline, Brunet-Lecomte & Campy,
1999). Arvicolines, in particular Microtus, are rela-
tively well studied in terms of ecology (e.g. Giraudoux
et al., 1997; Gårding, 2000; Lindström et al., 2001),

development (e.g. for teeth, Jernvall, Keränen, &
Thesleff, 2000; Salazar-Ciudad & Jernvall, 2002), phy-
logeny (e.g. Conroy & Cook, 2000; Conroy et al., 2001),
and biogeography (e.g. Conroy, Demboski & Cook,
1999; Jaarola, Tegelström & Fredga, 1999). Moreover,
the abundance of arvicoline teeth means there is a rel-
atively well-documented fossil record. This record has
proved a rich data source for many palaeontological
research programmes, including studies of evolution-
ary models (Chaline, 1987; Chaline et al., 1999) and
palaeoclimatology (Chaline et al., 1995; Montuire
et al., 1997).

Applications of statistical species discrimination
and morphospace analysis are frequent in this group
(Chaline & Laurin, 1986; Brunet-Lecomte, 1988; Cha-
line et al., 1993; Néraudeau et al., 1995; Schmittbull
et al., 1997; Courant et al., 1999; Laplana et al., 2000;
Hurth et al., 2004). They are generally based on tra-
ditional descriptors  corresponding  to  combinations
of linear measurements (Brunet-Lecomte, 1988;
Laplana et al., 2000). Previous applications to both
extant and fossil forms have shown that this descrip-
tor permits discrimination of tiny intraspecific differ-
ences (Laplana et al., 2000) and that it is a powerful
tool for extracting evolutionary information (Chaline
& Laurin, 1986; Chaline et al., 1993; Néraudeau
et al., 1995). Geometric morphometrics and outline
analysis have more rarely been used on this group
(Schmittbull et al., 1997; Courant et al., 1999;
Laplana et al., 2000; Hurth et al., 2004) but appear to
yield similar results.

The present study is an attempt to determine the
relative merits of the various morphometric descrip-
tors available. In addition, the method of complex Fou-
rier analysis, which has been seldom used since being
introduced to morphometrics in the 1980s, is applied
and compared with classical elliptic analysis. Compar-
isons are made between the descriptors (e.g. statistical
classification, morphospace), although no particular
case is made for any of them. Our aim is to: (1) quan-
tify the error rate and expected bias for statistical
classification; (2) observe similarity of morphospaces
and patterns inferred; (3) compare various descriptors
with their different intrinsic qualities based on the
results obtained.

MATERIAL AND MORPHOMETRIC 
DESCRIPTORS

SAMPLING

Our analysis was based on the first lower molars of
122 trapped voles from the Frankfurt am Main region
(Senckenberg Museum, Germany). The specimens
comprise equal numbers of Microtus arvalis and
M. agrestis as identified by criteria other than their
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first lower molars (e.g. fur colour, second upper molar
morphology, habitats). The first lower molars in these
two species display wide morphological variation
ranging from highly distinctive extreme forms to
intermediate forms that could not readily have been
ascribed to either species in the absence of other
criteria.

LINEAR MEASUREMENT METHODS

Traditionally, the morphology of first molars in voles is
described by a combination of 23 measurements
(Fig. 1; Brunet-Lecomte, 1988). This descriptor focuses
on the anterior part of the teeth, which has been
described as the principal locus of evolutionary modi-
fications in voles in contrast to what is considered a
more fixed posterior part (Chaline, 1972). A recent
study (Jernvall et al., 2000) has reported that tooth
development in voles is a process of iterated addition
of lateral cusps toward the front and is an example of
extreme molarization. Thus, this linear-based mor-
phometric scheme can be viewed as being weighted in
favour of morphological features gained in late onto-
genetic times.

A second descriptor (log-shape ratio) is a combina-
tion of 23 size-standardized and log transformed mea-
surements. Traditionally, tooth length is taken as a
proxy for size in arvicoline rodents. However, occlusal
surface area seems to provide a better estimate of size
or body mass (Creighton, 1980; Gingerich, Smith &
Rosenberg, 1982; Legendre, 1989) than tooth length

alone. A good estimate of the occlusal surface area
with linear measurement appears to be the square
root of the sum of all the squared variables (Sundberg,
1996), which measurement gives a closer correlation
with occlusal surface area (correlation coefficient:
arvalis = 0.727; agrestis = 0.892; whole sample =
0.923) than tooth length (arvalis = 0.685; agrestis =
0.867; whole sample = 0.89).

(1)

Linear measurements are made with a measuroscope
and tooth orientation is standardized using a refer-
ence axis based on two landmarks located at the base
of the first triangle (T1) and the fourth triangle (T4)
and positioned on the vertical axis (Fig. 1).

LANDMARKS

Landmarks-based analysis, i.e. geometric morphomet-
rics, is a powerful tool for characterizing shape. A pre-
requisite for its use is the precise definition of
homologous landmarks. In vole molars, a precise
determination of landmarks is relatively difficult and
sometimes uncertain. Some landmarks (located in the
anterior loops) can disappear, even within the same
species. While practicable, geometric morphometrics
thus shares the same problems of definition and loss of
information that linear morphometrics has. We chose
not to include this type of descriptor, preferring
traditional methods for characterizing form (linear
and outline descriptors) in order to obtain a better
characterization.

OUTLINE METHODS

Vole molars have a very complex outline of loops and
triangles. Complex outlines can be accurately
described by a number of methods. The most com-
monly used in morphometrics is elliptic Fourier anal-
ysis (EFA; Kuhl & Gardina, 1982; Rohlf & Archie,
1984). A related method, dual-axis Fourier shape anal-
ysis (DAFSA; Moellering & Rayner, 1981, 1982), has
been used far less since its development (e.g. Kincaid
& Schneider, 1983; Bertin et al., 2002) despite having
the advantage that it can be fitted to a signal in a sin-
gle pass. Here, we refer to this method as complex dis-
crete Fourier analysis (CDFA).

COMMON CHARACTERISTICS

Elliptic and complex analyses are similar methods,
sharing a number of features in common. Outlines are
drawn using a camera lucida. The same procedure is
used for standardizing orientation as is employed for
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Figure 1. Standardization of orientation and linear mea-
surements used in this study. First lower molars are all
positioned so that two landmarks located at the bases of
T1 and T4 lie on the vertical axis. This procedure was
repeated for outlines after digitization of drawings.
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linear measurements (Fig. 1). This was repeated with
outlines after digital acquisition of drawings. N equi-
distant points (here 512) are sampled along a curve.
Both types of analysis yield outline decomposition in
one or two discrete periodic signals of the xy coordi-
nates using a discrete Fourier transform (DFT).
Where N is a power of two, DFT uses a Fast Fourier
Transform (FFT) algorithm. Otherwise a computa-
tionally slower algorithm is used.

(2)

Sj is equal to either a real signal (Xj or Yj) or a complex
signal i.e. Zj = Xj + iYj with j = 0 to N-1. In each case,
N harmonics can be calculated. However, in practice, a
peculiar property of conjugate symmetry is that the
second half becomes redundant and N/2 harmonics
are sufficient. Each harmonic is characterized by its
amplitude and phase or by its Fourier coefficients.

(3)

(4)

C is the Euler formulation of the Fourier coefficients
and its correspondence with cosine-sine formulation is
as follows:

(5)

The amplitude is the modulus of the Fourier coeffi-
cient and corresponds to:

(6)

For each descriptor defined by these two outline meth-
ods (see below), two versions – size standardized
(abbreviated std) and non-standardized (abbreviated
nstd) – are considered. Because overall tooth shapes
between the two species are so similar, using the area
of the occlusal surface as a size proxy is adequate here.
Size standardization is obtained from the square root
of the area of the occlusal surface.

ELLIPTIC FOURIER ANALYSIS

This method is widely used in morphometrics (Rohlf &
Archie, 1984; Ferson, Rohlf & Koehn, 1985; Lestrel,
1997a; Schmittbull et al., 1997; McLellan & Endler,
1998). It employs two real signals, X and Y. Each sig-
nal is decomposed into harmonics and N/2 harmonics
are obtained (with N = number of sampling points),
conjugate symmetry making the other half redundant.
Four coefficients are obtained for each harmonic (two
for each signal; Eqn 5). This is the first descriptor
(EFA C: combination of 4K coefficients, where
K = number of harmonics). Two ways of combining
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amplitude are described in the literature. With the
first, the amplitude of each real signal is processed
separately and a general formulation is recovered (see
Eqn 6), which may be written where there are two
signals:

(7)

where ab and cd are the coefficient pairs for X and Y,
respectively.

In this case, no assumption is made concerning the
relationship between the two signals. This relation-
ship is expected to be brought out in the correlation
between two pairs of amplitudes.

The second approach previously used is to treat X
and Y as independent and to combine the four coeffi-
cients linearly:

(8)

However, this hypothesis of two independent signals is
unsatisfactory because both signals relate to the same
distance along the outline. We therefore prefer not to
use this technique. The third descriptor (EFA A) is a
combination of 2K amplitudes (Eqn 7). This EFA was
analysed using NTSYS-pc (Rohlf, 1993).

COMPLEX DISCRETE FOURIER ANALYSIS

This method has seldom been used since its develop-
ment in morphometrics (e.g. Kincaid & Schneider,
1983; Bertin et al., 2002) although it offers the great
advantage of processing a two-dimensional signal in a
single pass. This analysis was performed using MAT-
LAB Toolbox CDFT 2.7 (Dommergues, 2001) with
modifications made to the code. Unlike harmonic
decomposition in the realm of real numbers (e.g. ellip-
tic analysis), harmonics derived from a complex signal
do not have conjugate symmetry. So N conjugate har-
monics (or N/2 pairs of conjugate harmonics) are
obtained. Two pairs of coefficients are obtained for
each pair of conjugate harmonics (Eqn 5). Thus, the
descriptor obtained (CDFA C) corresponds to the com-
bination of 4K coefficients (2*2K, where K = number
of conjugate pairs of harmonics). The amplitude is
obtained from the modulus of the Fourier coefficient
(Eqn 6). The final descriptor is obtained by combining
2K amplitudes.

There is a correspondence between the elliptic coef-
ficients and coefficients from the complex method that
can be obtained by comparing the linearity of F:
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with

(10)

A  and AX Y
k k k k k ka b c d= + = +2 2 2 2

Ak = + + +a b c dk k k k
2 2 2 2

F F iFZ X Y( ) = ( ) + ( )

F Z Z e ej
i

kj
N

j

N
k( ) =

Ê
ËÁ

ˆ
¯̃

-

=

-

=

-

ÂÂ 1 2

0

1

0

1

Nk

N p



EFFECTS OF MORPHOMETRIC DESCRIPTOR CHANGES 247

© 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83, 243–260

(11)

(12)

Having identified the base ek, we have:

(13)

If we write these coefficients in their developed form:

(14)

(15)

(16)

that is to say:

(17)

(18)

Thus if we obtain the modulus of Equation 14, we
recover the general formulation of the amplitude (Eqn
6). Substituting the terms with those of Equation 18
gives the following correspondence:

(19)

(20)

In this form (Eqn 20), we recover the second form of
the amplitude from the elliptical method, although in
this instance a supplementary term corresponding to
the connection between the two real signals is intro-
duced. Elliptical coefficients can therefore easily be
transformed into coefficients of complex methods, if
results have not been truncated to N/2. For all the out-
line descriptors, a preliminary truncation is per-
formed and ten harmonics are used.

Finally, following the definition of Lestrel (1997b)
but with a restricted number of attributes
[Form = (Size, Shape)], five descriptors of form (Tradi-
tional, CDFA A nstd, CDFA C nstd, EFA A nstd and
EFA C nstd) and five descriptors of shape (Log Shape
Ratio, CDFA A std, CDFA C std, EFA A std and EFA C
std) have been defined and used in this study.

METHODOLOGICAL FRAMEWORKS

STATISTICAL CLASSIFICATION

Linear DA is the method most frequently used in spe-
cies discrimination studies (e.g. Carrasco, 2000) as
well as in comparative studies of morphometric
descriptors (McLellan & Endler, 1998; Dommergues
et al., 2003). In these approaches, evaluation of taxa or
comparison of descriptors is based on the quality of the
discriminant model. Frequently, this quality is based
on the percentage of correct classification (or incorrect
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classification for error rate) using a resubstitution
method. However, resubstitution overestimates qual-
ity because the model is not independent of classified
individuals and bias increases with the number of
parameters incorporated in the model (Lebart,
Morineau & Piron, 2000). For example, Lance,
Kennedy & Leberg (2000) have shown that this bias
may have a strong influence on taxonomic studies.
Likewise, and as emphasized by the difference in the
number of parameters, such bias may have a strong
effect on the evaluation of various morphometric
descriptors.

The aim of this section is to quantify the expected
predictive power, or conversely the expected error
rate, of a descriptor when statistical classification is
used in fossils of present-day species or in recent uni-
dentified samples extracted from owl pellets. If we are
to choose the more accurate descriptor, such bias must
be corrected. This is done by the leave-one-out cross-
validation technique. This procedure has been pre-
ferred to the sample splitting techniques in training
and test samples because, unlike splitting techniques,
it does not alter the training model (Lance et al.,
2000). For each sample (N-1), a linear DA is per-
formed and the class of the deleted observation eval-
uated using a posteriori probabilities of ‘plug-in’
classifiers (Ripley, 1996). As there are no grounds for
considering that all models are linear, quadratic mod-
els are evaluated in the same way.

Bias associated with a descriptor is calculated using
the procedure outlined by Lance et al. (2000). Random
permutations between species are made and the com-
plete analysis is repeated. In this way, the expected
error rate is 50% (Lance et al., 2000) and can be com-
pared with resubstitution and leave-one-out cross-
validation results. Bias is taken to be the deviation
between the expected 50% value and the actual value.
Analyses are performed under MATLAB using the
Discriminant Analysis Toolbox of Kiefte (1999).

MORPHOSPACES AND PATTERNS INFERRED

Morphospace analysis is now used increasingly in
palaeobiology; see, for example, the many disparity-
based studies in macroevolution. In many cases, these
morphospaces are constructed from a whole family
of morphometric descriptors. McGhee (1999) defined
them as empirical morphospaces and roundly criti-
cized their utilization in the study of evolutionary pat-
terns (but see Eble, 2000b for a review).

Dimensionality of morphospace
The main criticism of the use of empirical mor-
phospaces is their dependence on samples, entailing
non-comparability and instability. This dependence
makes it a prerequisite to reduce dimensionality of
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morphospace before it can be analysed. This involves
considering initial dimensions as essentially support-
ing signal with a minor effect of noise; suppressed
dimensions essentially reflect noise. In this way an
optimal pattern can be analysed free of noise (on
which sample dependence has a strong effect).

In many cases, the choice of dimensionality is
viewed as subjective. However, some methods have
been genuinely effective (Jackson, 1993). One method
relates to detecting structured as opposed to random
components (broken-stick model). Others relate to the
stability of components in the face of perturbation of
the sample using non-parametric bootstrapping
(Efron & Tibshirani, 1993). In these cases, PCA was
repeated 1000 times. The methodology outlined by
Jackson (1993) is first to retain a component with an
eigenvalue different from that of its successor (i.e.
ranges of two successive eigenvalues should not over-
lap). Second, components with two or more stable
eigenvector coefficients are chosen (i.e. 95% confidence
limits that do not contain zero).

Data perturbation may involve axis reflection as
well as permutations and rotations between axes with
similar eigenvalues. Axis reflection is not a true per-
turbation and must be corrected for. The simplest
method is to fix the sign of the largest coefficient (abso-
lute value) in initial space (Mehlman, Shepherd &
Kelt, 1995). This method, employed here, takes rota-
tions and permutations to be true perturbations con-
trary to other suggested methods such as Procrustes
analysis or partial bootstrap analysis (Lebart et al.,
2000). These other methods either adjust homologous
axes or conserve initial space and thus minimize per-
turbations due to rotation or permutation.

All three methods are used here to extract dimen-
sionality from the various morphospaces derived
from PCA. Analyses are performed on the correla-
tion matrix. Using the correlation instead of the vari-
ance/covariance matrix suppresses information about
the amount of variance and gives equal weight to all
parameters in the analysis. It implies that tiny
aspects of form have a similar influence to that of
other aspects with larger dispersions, while tiny
aspects of shape can be more informative than large
ones.

With all parameters in the same units, and use of
the variance/covariance matrix appropriate in context,
we use this approach because with linear descriptors
differences between variances can be related to the
definition of measurements. It also limits the effect of
size. All the procedures are implemented using MAT-
LAB code. Variances of principal components have not
been rescaled to unity and so are equal to their eigen-
value. In this way, components do not have the same
weight in subsequent analyses and this weight corre-
sponds to their initial degree of variance.

Similarity of morphospaces
Because morphospaces are based on descriptions of
the same morphological structure, they should be very
similar. Dissimilarity may result in either an
enhanced representation of the morphological struc-
ture or an improved recombination of information by
one descriptor or another. Similarity can be observed
on the basis of covariation between morphospaces.
One approach is to perform a partial least squares
(PLS) analysis (Sampson et al., 1989; McIntosh et al.,
1996; Rohlf & Corti, 2000). This approach, which was
developed to explore patterns of covariation between
two or more sets of variables, has been widely used in
neurobiology (e.g. McIntosh et al., 1996; McIntosh &
Gonzales-Lima, 1998; Della-Maggiore et al., 2000;
Lobaugh et al., 2001; Nestor et al., 2002). In morpho-
metrics it has been used in several studies to investi-
gate covariation between shape and trophic variables
(Adams & Rohlf, 2000; Rohlf & Corti, 2000), shape and
environmental variables (Corti et al., 1996), or
between two blocks of shape variables such as skull
and limb bones (Rohlf & Corti, 2000), dorsal and ven-
tral views of skulls (Rohlf & Corti, 2000), or develop-
mental modules of fly wings for a quantified level of
integration (Klingenberg & Zaklan, 2000; Klingenberg
et al., 2001).

Two-block PLS analysis corresponds to the
singular value decomposition (SVD) of the cross-
covariance (or cross-correlation) matrix between two
sets of variables. The extended computational proce-
dure is given in the literature; here, we simply
underline the major features. SVD provides sets of
mutually orthogonal latent variable (LV) pairs, that
account for progressively less of the sum of the
squared cross-block covariance (McIntosh & Gonza-
les-Lima, 1998). The number of LVs is fixed by the
minimal dimensionality of morphospaces compared
and goodness of fit can be measured by the ratio
between the sum of the squared cross-block covari-
ance accounted for by k LVs (corresponding to the
sum of k2 singular values) and the total squared
cross-covariance (corresponding to the sum of total
squared singular values). The value of each variable
of one block (called salience) corresponds to its corre-
lation with the latent variable of the other block
(Tabachnick & Bookstein, 1990).

As in PCA, scores on LV pairs can be computed and
contrasted. The scores of each block readily permit the
computation of correlations between the paired vari-
ables. The significance of latent variables and correla-
tions between blocks can be assessed by a sampled
randomization test (Sokal & Rohlf, 1995) using 5000
permutations (Rohlf & Corti, 2000). The reliability of
the contribution of saliences is assessed using the
ratio of salience to bootstrap standard error (1000 re-
sampling with replacement) as outlined by Lobaugh
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et al. (2001). In our study, analysis was performed
using MATLAB based in part on functions written by
A. R. McIntosh.

Two-block PLS has already been used to quantify
relationships between morphospaces (Tabachnick &
Bookstein, 1990). Those authors observed different
aspects of shape and considered the initial morpho-
metric descriptors to be shape variables. Here, we
use PLS for the same quantified aspect of shape or
form using different descriptors. The input data are
not the initial morphometric descriptors but the
scores on p and q stable PCs defining the two mor-
phospaces to be compared. This technique has been
chosen because our purpose is not to explain one
morphospace in terms of another but to define
whether the different morphospaces contain similar
information about the distribution of specimens
considering all potential sources of dissimilarity
(extraction of information, mathematical processing,
behaviour in the face of constraints of multivariate
ordination).

Congruence of pattern inferred
Morphospaces provide the basis of disparity analy-
sis and their bias can modify observed disparity
patterns. The disparity framework features a num-
ber of problematic and hierarchical levels of study,
e.g. evolutionary radiation (Foote, 1999), extinction
selectivity (Foote, 1991a, 1992), relative importance
of development in evolution, and of organization in
dynamics (Eble, 2002). However, in these fields,
problems of pattern stability with regard to ana-
tomical structure, hierarchical level and temporal
resolution changes can be outlined and have some-
times been tested (Foote, 1994, 1995, 1999; Eble,
2000a).

Another question is raised, concerning how robust
patterns may be when descriptors within the same
structure are changed. In this case, modification of
pattern cannot be inferred from the possibility of dis-
joint evolution between the different morphological
structures showing different evolutionary con-
straints. It must be inferred from the variation in the
quantity and structure of morphological information
contained in the descriptors and in their recombina-
tion. Morphospace/disparity analyses can easily be
applied to other problems and in such cases this
question remains. Thus, although our study is not
concerned with disparity, the problem is similar and
can be viewed in terms of whether or not the rela-
tionship between intraspecific dispersions within the
global morphospace is affected by the descriptor
used.

To explore this issue, we employed the classic
parameter of dissimilarity used in disparity studies
(Foote, 1991a; Eble, 2000a): the sum of variances or

total variance (i.e. the sum of the variance of each com-
ponent). In the initial framework of the disparity
study (i.e. disparity changes through time), various
tests on disparity values have been used. Some are
non-parametric (Foote, 1990, 1991b, 1993; 1994; Wills,
Briggs & Fortey, 1994; Eble, 2000a). A parametric
approach based on the z-test has been also used
(Foote, 1993; Eble, 2000a, 2002).

Here, the test of pattern robustness is based on the
differences in dispersion between the two species
observed for each descriptor. Two ways of testing dif-
ference are used. First, a sampled randomization test
(Sokal & Rohlf, 1995) is used to test a simple observed
difference in total variance (TV). The observed simple
differences between the two species are compared
with the 5000 values obtained by randomization. The
second technique is more akin to procedures previ-
ously used in disparity studies (Foote, 1993; Eble,
2000a, 2002). Bootstrap estimators of TV are com-
puted (with 200 bootstrap replicates) and z-tests are
performed. This kind of parametric approach is based
on the fact that bootstrap-sample statistics are nor-
mally distributed even if the original distributions are
non-normal and so the z-statistic follows a centred
normal distribution (Efron & Tibshirani, 1993). How-
ever, it seems possible that highly multimodal mor-
phological distribution (as should be observed in
higher-level studies) may bias a normal approxima-
tion of the bootstrap statistic and thus invalidate the
hypothesis of normality. This implies that the z-
statistic does not necessarily follow the centred nor-
mal distribution.

In the disparity framework nothing indicates that
species in the groups under study (stratigraphic or
otherwise) do not have multimodal distributions in P-
dimensional morphospace; thus the bootstrap sample
of TV follows a normal approximation. Because the
aim is to explore the effects of descriptor changes in
the same way as can be done at various levels of mor-
phospace study (i.e. from macroevolutionary to micro-
evolutionary), this assumption is maintained here.
Distribution of the z-statistic for the bootstrap estima-
tor of TV is considered to be unknown and so an
approach by sampled randomization is adopted. The
observed z-statistic is compared with 5000 values
obtained by sample randomization and, for compari-
son, compared with critical values obtained from cen-
tred normal approximation.

All tests are two-tailed, with multiple comparisons
performed on the same specimens. Descriptors repre-
sent, in part at least,  different codings of the same ini-
tial biological information. Thus, each descriptor has
some information in common with the others; the
morphological information processed is highly non-
independent and probabilities probably reflect a
relatively high risk of Type I error.
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RESULTS

STATISTICAL CLASSES

Apparent rate and bias estimation
All estimates of apparent quality (Wilks’ L, Mahalano-
bis distance and rate of classification using resub-
stitution) of the discriminants (Table 1) are good
and homogeneous among descriptors. The non-
standardized Fourier coefficients based on the com-
plex method (CDFA C nstd) yield the best results.
Generally, the standardized amplitudes based on the
elliptical method (EFA A std) give the poorest results
in each case, except for those based on resubstitution
of the linear discriminant where its version based on
the complex method (CDFA A std) is poor. In each case,
the non-standardized version provides a better result
than the standardized one. Linear descriptors yield
relatively good results mid-way between amplitude-
based and coefficient-based descriptors. Generally,
CDFA gives better results than EFA in terms of rela-
tive descriptors.

Previous results are based on the apparent rate,
which is biased by the number of parameters and the
non-independence of observations (see Methodological
frameworks). To estimate this bias, a randomization
procedure was performed. The expected value of correct
classification is 50%. The resubstitution technique
overestimates this rate (Table 2); the rate of correct
classification yields a similar value for descriptors with
the same number of parameters and this value is pos-
itively correlated with this number. The bias (viewed as
the difference between expected and actual values) is
larger with the quadratic discriminant where the
observed rate is close to the results obtained previously
without randomization. Values of correct classification
using the leave-one-out cross-validation techniques are

close to the expected value of 50%. The bias in this case
is generally less than 1% and only the larger descrip-
tors (Fourier coefficients) display a greater bias with
the quadratic discriminant (close to 3%). Moreover,
standard deviations of the results are larger in this
case (5% on average) than with the linear discriminant
(3% on average).

The number of parameters largely biases the resub-
stitution method. It is inadequate for estimating the
model’s quality and for purposes of comparison. In
contrast, leave-one-out cross-validation gives rela-
tively unbiased estimates and so allows effective com-
parison with various morphometric or statistical
methods (i.e. linear vs. quadratic discriminants).

Linear vs. quadratic discriminants
For each descriptor, the results of cross-validation on
linear discriminants are better (Table 1) than for qua-
dratic discriminants (from 0.49% for CDFA A nstd to
9.68% for CDFA C nstd, with an average of 4.02%).
Moreover, linear discriminants seem to be more stable
than quadratic ones, as the standard deviations
obtained from randomization indicate. Thus, it would
be better to observe differences between descriptors on
linear discriminants and for all further comparisons to
be made on cross-validation estimates based on linear
discriminants.

Standardized vs. non-standardized versions
In non-standardized versions, CDFA C yields the bet-
ter value (98.99%) and CDFA A the poorer one
(96.02%). In standardized versions, the better descrip-
tor is CDFA C (96.39%) and the poorer one is EFA A
(89.05%). Nonstandardized versions of each descriptor
give a better rate of correct classification than the

Table 1. Results of the linear and quadratic discriminants. NP, number of parameters incorporated in the model. Rsub,
results of the resubstitution method. Cval, results of the leave-one-out cross-validation method. Rsub and Cval show the
percentage of correct assignment using a posteriori probabilities obtained from linear and quadratic discriminant. D2,
Mahalanobis distance between the two species. All values of Wilks’ L are highly significant at P < 0.0001

Descriptor NP

Linear Quadratic

Wilks’ L D2 Rsub Cval Rsub Cval

Traditional 23 0.119 29.18 99.78 98.35 99.91 95.29
Log Ratio 23 0.154 21.58 98.78 96.20 99.36 93.45
CDFA A nstd 20 0.154 21.67 98.84 96.02 99.96 95.53
CDFA A std 20 0.244 12.19 94.03 90.53 98.31 89.11
CDFA C nstd 40 0.072 50.69 100 98.99 100 89.31
CDFA C std 40 0.117 29.54 99.90 96.39 100 89.66
EFA A nstd 20 0.186 17.24 98.96 96.22 99.77 93.64
EFA A std 20 0.262 11.08 94.35 89.05 98.05 86.73
EFA C nstd 40 0.112 31.18 99.93 97.36 100 89.52
EFA C std 40 0.123 28.02 99.89 95.09 100 91.68
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standardized ones (Table 1). The difference ranges
between 2.15% (Traditional vs. Log Shape Ratio) and
7.17% (EFA A). Amplitude-based descriptors (CDFA A
and EFA A) have larger differences (respectively
5.49% and 7.17%) as opposed to c. 2% for coefficient-
based and linear-based descriptors. The loss in quality
due to  standardization is easily explained by the fact
that a large difference size and shape between the two
species is due to significant difference in size (ANOVA:

 P < 0.0001 and 
P < 0.0001) with M. agrestis larger than M. arvalis.
The largest differences observed for the amplitude-
based descriptor appear to indicate that after
removing the size effect, these descriptors no longer
displayed sufficient aspects of shape for the discrimi-
nation of species [which seem to be present in other
descriptors such as the coefficient-based or Log Shape
Ratio (LSR) descriptors].

To summarize the results a UPGMA tree was con-
structed from the absolute difference in the percent-
age of correct classification due to cross-validation
(Fig. 2). Major structuring of the tree reflects size
effects. However, the impact of other factors appears to
be significant since the tree was not symmetrical
owing largely to the poor results obtained by ampli-
tude-based descriptors. Amplitude is a technique that
totally removes the effects of orientation and quanti-
fies only the magnitude of the harmonics. Thus, ampli-
tude-based descriptors eliminate many aspects of
shape; for example, no information about symmetry/
asymmetry is conserved. In contrast, coefficient-based
descriptors maintain this information, which is also

F VÂ =2 147 23. F VÂ =2 168 29.

present in linear descriptors. This information seems
to be the second major effect that structured the tree
and explained the similarity in results for linear and
coefficient-based descriptors.

Figure 2. UPGMA tree based on absolute differences in
the percentage of correct classification (Leave-one-out
cross-validation) obtained with a linear discriminant.
Major effects are the size factor (standardized vs. non-
standardized descriptors) and tooth symmetry/asymmetry
(amplitude-based vs. coefficient-based and linear-based
descriptors). There appears to be a slight effect due to the
Fourier method used (elliptic vs. complex), but none due to
the type of morphological information extracted (outline vs.
linear).

01234567

Traditional

CDFA A nstd

CDFA C nstd

EFA A nstd

EFA C nstd

Log Shape Ratio

CDFA A std

CDFA C std

EFA A std

EFA C std

Difference in % of well classing

Table 2. Bias in expected results of the linear and quadratic discriminants. For each randomization (1000), discriminant
and classification by resubstitution or leave-one-out cross-validation was performed for each descriptor. Because observa-
tions were randomly re-attributed to one of the two species, the expected rate of correct classification is 50%. Bias can be
viewed as the deviation between the actual and the expected rates. NP, number of parameters incorporated into the model.
Rsub, results of the resubstitution method. Cval, results of the leave-one-out cross-validation method. Rsub and Cval show
the average percentage of correct attributions using a posteriori probabilities obtained from linear and quadratic discrim-
inants. Numbers in brackets indicate the standard deviation

Descriptor NP

Linear Quadratic

Rsub Cval Rsub Cval

Traditional 23 59.46 [2.48] 49.55 [2.88] 90.80 [1.93] 49.06 [5.08]
Log Ratio 23 59.41 [2.52] 49.48 [2.91] 90.66 [1.99] 49.00 [4.82]
CDFA A nstd 20 58.34 [2.46] 49.70 [2.81] 87.39 [2.10] 49.27 [5.00]
CDFA A std 20 58.34 [2.43] 49.72 [2.78] 86.69 [2.12] 49.19 [4.83]
CDFA C nstd 40 67.10 [3.35] 49.53 [3.97] 99.61 [0.43] 47.40 [5.88]
CDFA C std 40 67.11 [3.39] 49.53 [4.01] 99.65 [0.40] 47.21 [5.76]
EFA A nstd 20 58.33 [2.41] 49.68 [2.75] 87.94 [1.97] 49.35 [4.94]
EFA A std 20 58.32 [2.38] 49.68 [2.72] 87.61 [2.07] 49.26 [4.88]
EFA C nstd 40 67.13 [3.32] 49.53 [3.95] 99.63 [0.41] 47.35 [5.94]
EFA C std 40 67.14 [3.35] 49.57 [4.01] 99.71 [0.37] 47.50 [6.00]
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CDFA vs. EFA
CDFA and EFA yield similar results for their respec-
tive versions of descriptors (Table 1). In most cases,
slight differences favour the complex method (average
of 1.47% without A nstd). Only the non-standardized
amplitude method failed to reveal this difference
(96.02% for CDFA and 96.22% for EFA). This gain in
favour of CDFA is recovered by the structuring of the
more internal branch of the UPGMA tree (Fig. 2).

Linear vs. Fourier analysis
Although CDFA C has slightly better predictive power
than linear-based descriptors (98.99% against 98.35%
for nstd and 96.39% against 96.20% for std), the dif-
ferences are small. So, no effect appears to be due to
the type of morphological information extracted.

MORPHOSPACES AND PATTERNS INFERRED

Dimensionality of morphospaces
The various methods employed to reduce the dimen-
sionality of morphospace (broken-stick, bootstrap
eigenvalues and eigenvectors) yield results in the
same order from two to five axes (Table 3). For each
descriptor, the methods show a difference from one to
three axes (with a majority in one axis). These results
differ from those obtained using thresholds of 75% (4-
7 axes) or 95% (11-17 axes) as might be expected from
results obtained by Jackson (1993), which underlined
that these threshold methods did not estimate dimen-
sionality correctly.

In the majority of cases where Fourier-based
descriptors and broken-stick or bootstrap eigenvector
methods are used, morphospaces lose one axis
between the non-standardized and standardized ver-
sions (except for EFA A and CDFA C using the
eigenvector method, where two axes are lost).
Morphospaces based on linear descriptors show
increased dimensionality between non-standardized
and standardized versions; reduced dimensionality
can be related to the loss of the size factor. Conversely,
the gain in dimensionality of the linear descriptor may
be related to bias in the recombination of information
by PCA. The considerable redundancy of non-
standardized linear variables may affect structuring
or stability and focus information on the first axis.
Standardization, in this case, redistributes informa-
tion and a better representation is obtained by PCA.
For each descriptor, the bootstrap eigenvector method
generally gives one more axis than the broken-stick
method. Frequently, this axis features fewer stable
variables than for higher-ranking components. More-
over, these stable eigenvector coefficients have similar
values. It seems that these coefficients represent
redundant morphological information and the dimen-
sionality may be overestimated.

The eigenvalue method yields results with loss of
one (linear and CDFA A) or two axes (EFA A). For
other descriptors no loss of axis is observed; two axes
are retained in most cases. This method underesti-
mates dimensionality compared with the other two.
This can be explained by the fact that although dimen-
sions are structured and stable, eigenvalues are sim-
ilar and so ranges overlap. The cut-off point of the
dimensionality is a compromise between components
which mostly have signal and those which mostly con-
sist of noise. Broken-stick is a simple procedure based
on the recognition of structured components, in oppo-
sition to the expected distribution of eigenvalues from
a random signal. However, it does not take sample size
into account and thus gives results between those of
the two other procedures based on sampling error. We
prefer to use the broken-stick procedure, which gives
structured axes that are stable (lower estimates than
eigenvectors) but may present similar eigenvalues
(higher estimates than eigenvalues).

Complex and elliptic Fourier descriptors present
equal dimensionality of their morphospace. How-
ever, a reduction in dimensionality can be observed
between coefficient-based and amplitude-based
descriptors. This may be due to the loss of informa-
tion when the latter are used, i.e. structured in a
less complex way (fewer variables). The case of lin-
ear measurements (Traditional and LSR) seems to
indicate that the structuring of data affects the
capacity of PCA to recombine information (problem
of the size factor).

Table 3. Dimensionality of morphospaces from various
threshold methods. Results obtained from broken-stick
(BS), bootstrap of eigenvalues (Eva), and eigenvector (Eve)
coefficient methods are similar. These three methods are
considered as the most consistent by Jackson (1993).
Thresholds of 75% and 95% of total variance are given for
comparison. N retained corresponds to the dimensionality
of reduced morphospace considered in subsequent analyses

Descriptor 75% 95% BS

Bootstrap

EVa EVe

Traditional 5 12 2 2 3
Log Ratio 7 14 4 1 4
CDFA A nstd 5 11 3 3 4
CDFA A std 5 12 2 2 3
CDFA C nstd 5 15 4 2 5
CDFA C std 6 16 3 2 3
EFA A nstd 4 12 3 4 5
EFA A std 5 13 2 2 3
EFA C nstd 5 16 4 2 5
EFA C std 5 17 3 2 4
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Figure 3. Morphospace of Microtus agrestis ( ) and M. arvalis (�); the first two PCs from each descriptor.
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Similarity of morphospace
The first two component spaces (i.e. PCs 1 and 2)
accounted for similar percentages of the initial vari-
ance among descriptors (Fig. 3). PC 1 represents from
26.4% (LSR) to 46.3% (EFA C std) of the total variance
and PC 2 from 14.6% (EFA C std) to 20.5% (EFA A
nstd). For outline-based descriptors, the percentage
of the total variance accounted for by PC 1 increases
(1–2%) between non-standardized and standardized
versions. The percentage decreases for PC 2 (1–4%).
The reverse is observed for linear-based descriptors
(decrease of 20% for PC 1 and increase of 0.7%
between non-standardized and standardized ver-
sions). Complete morphospaces (i.e. all dimensions
retained) accounted for between 51.18% (CDFA A std)
and 74.05% (EFA C nstd) of the initial variance
(Table 4); the variation in this percentage is largely
due to the difference in dimensionality.

However, the two complete linear-based mor-
phospaces (PCs retained) show a similar percentage of
the total variance (61.8% for Traditional and 62.81%
for LSR) despite the difference in dimensionality. This,
together with the previous difference between outline
and linear-based descriptors, appears to indicate that
there is considerable redundancy of linear measure-
ments when these variables are non-standardized,
affecting recombination of information by PCA. Infor-
mation is condensed in PC 1 due to size effects and
PCA fails to recover stable, independent morphologi-
cal components. When standardization occurs, rela-
tionships between variables are better represented
and better segregated among components.

The various morphological mappings constructed
display a similar general pattern. In all cases, much of
the interspecies variance is based on PC 1, along
which both species have virtually separate distribu-
tion. Observed distinctness (Fig. 3) seems larger when
non-standardized descriptors are used rather than

standardized ones; this is in accordance with the dif-
ference in size reported previously. Thus, much of the
total variance observed in the initial matrices is inter-
species variance.

In most cases (39/45 pairwise comparisons), PLS did
not reduce dimensionality (i.e. all LVs are significant
at P < 0.05, and in many cases at P < 0.0001). When
reduction occurs, a loss of 1-2 pairs of latent variables
from the maximum possible is observed. In four cases
of reduced dimensionality, the LSR-based mor-
phospace is considered in comparison with the other
block as CDFA A nstd, CDFA C nstd and std, EFA A
nstd. The other two cases are comparisons between
CDFA C std and either CDFA A nstd or EFA A nstd.
The pair of latent variables accounts for an average of
85.86% (first pair) and 98.52% (first two pairs) of the
total covariation between the two morphospaces.
Thus, LV 1 accounted for most of the covariation
between morphospaces, although LV 2 accounted for a
non-negligible part (maximum 34%), even when there
are two LVs. Scatterplots of the first two pairs of LV
(Fig. 4) show that LV 1 summarizes the cross-
covariance between two morphospaces due to inter-
specific differentiation, while LV 2 summarizes
another aspect of the cross-covariance due to intraspe-
cific differentiation.

In many cases, the bootstrap ratio of saliences
shows a major contribution to one PC, but this evi-
dence of similarity is frequently altered (i.e. contribu-
tion of more than one PC) when some initial factors of
dissimilarity have been introduced (i.e. linear vs. Fou-
rier; std vs. nstd, coefficients vs. amplitude). The one-
to-one correspondence between PCs of each block
seems less affected by the mathematical processing of
outline (elliptic vs. complex). However, the large num-
ber of comparisons makes this information difficult to
summarize and it is not developed further here.

A more obvious approach is to observe the correla-
tion coefficient between blocks on the first two LVs
(Table 5) as a proxy for similarity. On both LVs,
greater similarities (i.e. high correlation coefficient)
are obtained from comparison within outline-based
descriptors than from between linear- and outline-
based descriptors. On LV 1, correlations are relatively
high even between linear and outline morphospace
(from 0.56 for Traditional vs. EFA C std to 0.86 for
Traditional vs. CDFA A nstd). Strangely, the correla-
tion between standardized linear measurements mor-
phospace (LSR) and outline-based morphospace is
higher with non-standardized versions of outline-
based descriptors than with standardized ones.

Correlations decrease largely on LV 2 (from 0.22 for
Traditional vs. CDFA A std to 0.48 for Traditional vs.
CDFA A nstd). Thus, between morphometric families
(i.e. linear measurements vs. outline), morphospaces
present relatively good similarity, although in only one

Table 4. Percentage of the initial variance summarized by
each morphospace. D, dimensionality

Descriptor D
Per cent initial
variance

Traditional 2 61.80
Log Ratio 4 62.81
CDFA A nstd 3 67.58
CDFA A std 2 51.19
CDFA C nstd 4 72.20
CDFA C std 3 64.04
EFA A nstd 3 69.25
EFA A std 2 52.88
EFA C nstd 4 74.04
EFA C std 3 68.30
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respect, that of interspecific differentiation. In con-
trast, within outline-based morphospaces, similarities
are very great. From 0.86 for EFA A std vs. CDFA C
nstd to 0.99 for the two versions of CDFA C on LV 1,
and from 0.62 for CDFA A nstd vs. EFA C std to 0.98
for the two versions of CDFA C on LV 2.

To summarize all pairwise similarities, a UPGMA
tree was constructed for each pair of LVs (Fig. 5). The

major effect of dissimilarity (albeit relatively weak
since correlations are close to 0.7) structuring the two
trees corresponds to the type of information extracted
(i.e. linear measurements vs. outline). Dissimilarity
due to size standardization is well marked in linear-
based descriptors and in elliptic-based descriptors.
Complex-based descriptors are affected very little by
standardization. Another factor structuring trees
is the dichotomy between amplitude-based and
coefficient-based descriptors. Thus, the inclusion of
orientation (tooth symmetry/asymmetry) in outline-

Figure 4. Example of scatterplot of the two first pairs of
latent variable. : Microtus agrestis. �: M. arvalis. A, LV
1 B, LV 2. Ordinates correspond to CDFA C std-based
morphospace and abscissa to Log Shape Ratio-based mor-
phospace. The correlations are 0.7 (A) and 0.3 (B). Each
scatterplot corresponds to one aspect of covariation
between morphospaces: interspecific differentiation on LV
1 (A) and intraspecific variability on LV 2 (B).
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Similarity is considered as the correlation between each
morphospace (i.e. each block) obtained from two-blocks par-
tial least squares analysis. Similarity is based on the
results of the first latent variables (A) or the second latent
variables (B). In both cases, the information extracted (i.e.
linear measurements vs. outline) is the more important
feature structuring the trees.
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EFA C nstd

EFA C std

Morphospace similarity [LV 2]

B

A



256 N. NAVARRO ET AL.

© 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83, 243–260

based descriptors affects the degree of similarity
among morphospaces.

Congruence of pattern inferred
The raw values of difference in intraspecific variance
(i.e. difference in the sum of variances for each com-
ponent) cannot be directly compared among mor-
phospaces because it did not take the same number of
axes into account. Moreover, axes were not rescaled to
unity; the variance of the axis thus represented the
initial part, which is dependent on the number of ini-
tial variables. However, as a first approach, the signs
of the difference may be compared. In many cases
(except LSR), differences are positive: i.e. M. agrestis
displays greater intraspecific variance than M. arvalis
(Table 6). On the other hand, patterns of significance
of the difference can be compared. Similar results are
obtained whichever test is used (randomization of
simple difference, randomization or normal approxi-
mation of z-statistic). However, the test based on
randomization of simple differences seems more con-
servative than the other two based on the z-statistic.
The two approaches to assessing the significance of
the z-statistic yield similar results, although slightly
more conservative values are obtained from random-
ization. It should be emphasized that the standard
assumption for the z-statistic seems to be correct in
our case.

Differences from non-standardized descriptors are
always significant. In the majority of cases, standard-
ized descriptors show no significant differences in
intraspecific variance, except for amplitude-based
descriptors (EFA A and CDFA A). Thus, generally
(except for amplitude-based descriptors), when differ-
ence in size is removed, the intraspecific variances in
shape of the two species are finally equivalent.

DISCUSSION

Our analyses show that effects of descriptor changes
are diverse and depend on many initial factors of dis-
similarity between them, e.g. information extracted,
size standardization, initial mathematical processing,
retention or removal of some part of the shape infor-
mation (e.g. tooth asymmetry). However, the magni-
tude of the effects, and the fact that they actually
induce a dissimilarity in the results, is heavily depen-
dent on the analysis performed (e.g. DA, PCA).

Thus, in statistical classifications, results are simi-
lar and major dissimilarity effects are connected with
size (although in this case this dissimilarity is normal
since it reveals a difference between form and shape
descriptors) and with the elimination of some part of
the shape information when Fourier amplitudes are
used. Using complex Fourier coefficients instead of lin-
ear measurements does not greatly improve the gain

Table 5. Similarities between morphospaces. Similarity is viewed as the correlation coefficient between blocks on each
latent variable (LV). The bottom triangular matrix corresponds to LV 1 and the top one to LV 2. All LV 1 and associated
correlations are significant at P < 0.0001. All LV 2 and associated correlations are significant at P < 0.0001 for comparison
among outline-based descriptors: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. The first line under the correlation
corresponds to the probabilities of the latent variables and the second line corresponds to the probabilities of the associated
correlations. Probabilities correspond to the number of permutations out of 5000 exceeding the observed value. Trad,
traditional; LSR, Log Shape Ratio

Log Trad LSR

CDFA EFA

A nstd A std C nstd C std A nstd A std C nstd C std

Trad 0.5486 0.4813 0.2225 0.4377 0.2494 0.4860 0.2311 0.4844 0.1485
**** **** **** **** *** **** *** **** *
**** **** **** **** ** **** *** **** 0.089
LSR 0.8637 0.2371 0.2531 0.3681 0.3165 0.2268 0.2547 0.3553 0.4165
0.08 **** ** **** 0.06 * * ****
* **** *** **** * **** *** ****
CDFA A nstd 0.8576 0.7512 0.9814 0.8320 0.7988 0.9135 0.8508 0.7968 0.6244
CDFA A std 0.4686 0.6422 0.9705 0.7930 0.7849 0.9305 0.8660 0.7345 0.6487
CDFA C nstd 0.7611 0.7599 0.9272 0.9056 0.9765 0.8206 0.7625 0.9430 0.8677
CDFA C std 0.5771 0.7016 0.9048 0.9163 0.9946 0.8026 0.7586 0.9313 0.8989
EFA A nstd 0.8224 0.7234 0.9418 0.9327 0.9139 0.9115 0.9024 0.9088 0.6865
EFA A std 0.4609 0.6026 0.9021 0.9347 0.8586 0.8703 0.9345 0.742 0.7798
EFA C nstd 0.6933 0.7317 0.9034 0.8971 0.9656 0.9609 0.9499 0.8794 0.9315
EFA C std 0.5611 0.688 0.8624 0.8791 0.9103 0.9160 0.8930 0.9415 0.9336
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in classification, and may even involve a loss when
amplitudes or other mathematical processing (elliptic)
are used.

In voles, particularly in the case of Microtus, opti-
mization of the linear descriptor on the anterior part
of the tooth seems quite adequate for discriminating
between species. In keeping with the developmental
pathway of vole teeth (Jernvall et al., 2000; Salazar-
Ciudad & Jernvall, 2002), major evolutionary innova-
tions and thus major features for separating taxa
occur in all likelihood in the anterior part of the tooth.
Thus, optimization on this part weights the descriptor
in favour of potentially informative characters. By
contrast, outline-based descriptors provide a more
accurate description of shape, although the informa-
tive component has the same weight as the uninfor-
mative component.

Results are similar in morphospace analysis among
descriptors. However, the major effect of dissimilarity
is not the same as in statistical classification. The type
of information extracted (linear vs. outline) has a
greater influence in this application. Similarities
among morphospaces based on specimen distribution
show that the information extracted is the major
source of dissimilarity. Thus, interspecific differentia-
tion is well recovered from morphospaces based on dif-
ferently extracted information, while intraspecific
differentiation is not quantified in the same way and is
markedly different. Between outline descriptors,
segregation is still recovered from amplitude- and
coefficient-based descriptors.

Problems appear to occur with size standardization
of elliptic descriptors. However, there are considerable
similarities with both aspects of inter- and intraspe-
cific differentiation. As for statistical classification, the
developmental pathway of vole teeth can go some way

toward explaining these results. Major dental features
inducing interspecific differentiation are contained in
all descriptors. However, outline and Fourier coeffi-
cients in particular allow us to better quantify the
shape aspect (the uninformative part in statistical
classification). Mammalian teeth are acknowledged to
be highly evolvable with small developmental changes
inducing large changes in the size and number of
small cusps (Jernvall, 2000). In all likelihood, the
developmental process of iterative addition of lateral
cusps in voles accounts for this evolvability of new
small cusps in the most anterior part of the tooth.
Such small cusps occur regularly in the anterior loops
of the tooth in M. agrestis. Linear measurements did
not take into account such shape changes, contrary to
outline techniques. Thus, this aspect of the evolvabil-
ity of new cusps is more fully described by outline
descriptors, although it corresponds to a lower level of
morphological differentiation (e.g. intraspecific) and
explains the divergence of morphospaces based on the
different information extracted.

Despite dissimilarities among morphospaces, pat-
terns of variation are very similar. One major effect is
due to the utilization of form or shape descriptors: con-
serving size induces a difference in variance between
the two species. This difference is maintained when
standardized amplitudes (in elliptic or complex meth-
ods) are used. However, this is difficult to explain. The
results are more or less conservative depending on the
test used, but also depending on the type of informa-
tion extracted.

The impact of descriptors on results varies and is
related to the analysis performed. Thus, linear-based
descriptors appear to be  very effective at capturing
major features of shape, describing interspecific differ-
entiation and performing species discrimination.

Table 6. Difference in intraspecific variance based on the reduced morphospace and associated probabilities. OD, differ-
ence in observed Total Variance between Microtus agrestis and M. arvalis (positive values correspond to a larger multi-
variate dispersion of M. agrestis). TVagres. and TVarv. indicate the bootstrap estimator (200 replicates) of intraspecific
multivariate variance of the two species (mean of the bootstrap sample with this standard deviation in brackets). z-values
are based on bootstrap estimators. Prand = probability based on sampled randomization (simple difference and z-statistic
with 5000 replicates); Pnorm = probability based on normal approximation for the z-statistic

Descriptor OD Prand TVagres. TVarv. z-value Prand Pnorm

Traditional 4.25 0.0472 9.99 [1.25] 5.88 [0.97] 2.60 0.0086 0.0093
Log Ratio -0.45 0.8486 11.24 [1.26] 11.88 [1.53] -0.32 0.7612 0.7467
CDFA A nstd 5.87 <0.0001 11.46 [0.93] 5.71 [0.67] 5.01 <0.0001 <0.0001
CDFA A std 3.52 0.0408 9.33 [0.84] 5.85 [0.84] 2.9 0.003 0.0034
CDFA C nstd 11.60 0.0094 26.03 [3.06] 14.65 [2.56] 2.85 0.006 0.0044
CDFA C std 6.95 0.1710 22.29 [2.95] 15.49 [2.93] 1.63 0.1112 0.1020
EFA A nstd 7.98 <0.0001 13.08 [2.33] 5.39 [0.68] 3.17 <0.0001 0.0015
EFA A std 4.17 0.0210 10.03 [1.00] 5.96 [0.88] 3.05 0.0038 0.0023
EFA C nstd 13.41 0.0184 27.00 [4.25] 14.08 [2.57] 2.60 0.0106 0.0092
EFA C std 7.73 0.1916 23.22 [3.56] 15.76 [2.75] 1.66 0.106 0.0976
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However, they fail when a more modular description of
shape is needed, for example when a study focuses
on more precise aspects of shape such as tooth
evolvability.

The complex method of Fourier analysis appears to
have a number of advantages over classical elliptic
analysis. The complex formulation of outline means
information can be synthesized and the signal pro-
cessed with the covariation of the two real signals. Our
analyses suggest that complex methods yield some-
what better results in many cases, such as a gain
in classification. However, they are limited to 2-
dimensional signals whereas the elliptic analysis may
be extended to 3-dimensional ones (Lestrel, 1997c).

In conclusion, our study emphasizes that the con-
cept of a good descriptor is relative to the problem
being examined. Despite their different intrinsic qual-
ities, two descriptors can yield similar results if the
requisite information is contained in both.
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