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Abstract

Fluctuating asymmetry is a classic concept linked to organismal development. It has traditionally been used as a measure of
developmental instability, which is the inability of an organism to buffer environmental fluctuations during development.
Developmental stability has a genetic component that influences the final phenotype of the organism and can lead to
congenital disorders. According to alternative hypotheses, this genetic component might be either the result of additive
genetic effects or a by-product of developmental gene networks. Here we present a genome-wide association study of the
genetic architecture of fluctuating asymmetry of the skull shape in mice. Geometric morphometric methods were applied to
quantify fluctuating asymmetry: we estimated fluctuating asymmetry as Mahalanobis distances to the mean asymmetry,
correcting first for genetic directional asymmetry. We applied the marginal epistasis test to study epistasis among genomic
regions. Results showed no evidence of additive effects but several interacting regions significantly associated with
fluctuating asymmetry. Among the candidate genes overlapping these interacting regions we found an over-representation of
genes involved in craniofacial development. A gene network is likely to be associated with skull developmental stability, and
genes originally described as buffering genes (e.g., Hspa2) might occupy central positions within these networks, where
regulatory elements may also play an important role. Our results constitute an important step in the exploration of the
molecular roots of developmental stability and the first empirical evidence about its genetic architecture.

Introduction

Environmental stressors or genetic mutations can produce
perturbations of standard developmental pathways and
therefore increase developmental noise. The ability of
organisms to buffer their development against environmental
and genetic perturbations is known as developmental stability
(DS). This attribute allows the organism to develop an
appropriate target phenotype, which is essential for its survi-
val and reproduction. DS is a component of phenotypic
robustness, which has been largely reviewed within the
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evolutionary literature and has strong clinical implications (De
Visser et al. 2003; Gonzalez et al. 2016; Queitsch and Carlson
2012; Siegal and Leu 2014). In particular, the development of
craniofacial traits and their stability is a topic of broad interest
because of the genetic and environmental factors that may
lead to congenital disorders. However, the developmental
architecture of the craniofacial shape is still far from clear due
to the complexity of the craniofacial genotype—phenotype
map (Hallgrimsson et al. 2014).

Fluctuating asymmetry (FA) comprises random devia-
tions from the population mean asymmetry (Palmer and
Strobeck 1986) and is accepted, with some measures of
caution, as a good approximation to DS (Klingenberg
2015). Over the past 60 years various authors have pro-
posed that FA has an important genetic component (Atchley
and Rutledge 1980; Van Valen 1962; Waddington 1957),
which was empirically shown later in individuals affected
by major genetic diseases (Bock and Bowman 2006; Miller
et al. 2014; Richtsmeier et al. 2005) and through experi-
mental set-ups (Breuker et al. 2006). DS is influenced by a
genetic component that may regulate the impact of envir-
onmental conditions over the final phenotype (Mather 1953;
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Palmer and Strobeck 1986; Reeve 1960; Thoday 1958; Van
Dongen 2006; Waddington 1957). However, the literature
on DS heritability has yielded low estimates (Leamy and
Klingenberg 2005; Leamy et al. 2015; Van Dongen 2006),
and currently a good consensus exists about the non-
additive nature of FA (Leamy and Klingenberg 2005;
Leamy et al. 2015; Van Dongen 2006). In the area of cra-
niofacial genetics, many studies about shape FA are also in
agreement with this view (Ferndndez Iriarte et al. 2003;
Leamy et al. 2000; Leamy et al. 2005; Leamy 1993; Leamy
and Klingenberg 2005; Leamy et al. 2015; Leamy et al.
2001; Leamy et al. 2002). Nonetheless, the ecological (De
Coster et al. 2013), genetic and developmental roots of FA
remain mostly unknown, except for some molecular
explanations about the general origin of asymmetric varia-
tion (Coutelis et al. 2014; Vanderberg and Levin 2013).

Despite the widespread development of genome-wide
association studies (GWAS) in humans (Visscher et al.
2017) and model organisms (Flint and Eskin 2012), only
few studies have applied this approach to investigate FA
genetics (Guadalupe et al. 2014; Tadayon et al. 2016). To
our knowledge, no previous attempt has been made to
conduct a GWAS on shape FA in the context of geometric
morphometrics. In model organisms (e.g., mice), GWAS
can benefit from carefully designed populations with
desirable genetic properties such as an unstructured pattern
of relatedness (Nicod et al. 2016; Speed and Balding 2015).
In addition, biologically relevant univariate measures of
shape FA (Klingenberg and Monteiro 2005) simplify the
use of the geometric morphometrics toolkit, which is
complex and computationally expensive in the context of
multivariate GWAS.

Here we collected published data on skull shape in an
outbred population of mice (Pallares et al. 2015a) to explore
the genetic architecture of shape FA. We tried to disen-
tangle the association among genome and shape FA with an
additive and two non-additive genetic models. Non-
additivity was studied first within a locus and second as
the total amount of epistatic variance associated with each
locus. Finally, we have considered the loci best associated
with the total amount of epistatic variance to study their
pairwise interactions (Rice 1998).

Materials and methods

Samples

The sample consists of 692 Carworth Farms White mice
maintained by Charles River Laboratories. These mice are a

population of outbred mice derived from a small number of
founders (Nicod et al. 2016). Our sample exhibits low and
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standardised relatedness among individuals (Parker et al.
2014) and previous studies have shown no bias in the
results due to population structure (Pallares et al. 2015a;
Parker et al. 2016). All data are available from Dryad
(Pallares et al. 2015b), linked to the original publication by
Pallares et al. (2015a).

Geometric morphometrics

The coordinates of a set of 44 tridimensional landmarks
from the skull were obtained from the dataset of Pallares
et al. (2015a). We performed on these landmarks a fully
generalised Procrustes superimposition to standardise size,
position, orientation and reflection (Dryden and Mardia
1998). The superimposition estimates the asymmetric
component of each skull shape, i.e., the difference between
the original and mirrored landmark configurations to the
mean shape (Klingenberg et al. 2002). The asymmetric
component constitutes a natural measure of the difference
between the two symmetrical sides of a given biological
structure. Both Procrustes superimposition and the extrac-
tion of the asymmetric component were run in Morphol
v1.06 (Klingenberg 2011).

Because FA is randomly distributed around the mean
asymmetry, the Procrustes distances from each individual
asymmetric component to the population average are an
acceptable univariate measure of FA (Goodall 1991; Klin-
genberg and Mclntyre 1998). However, integration (cov-
ariation among landmarks) is a widespread feature in
morphometric data (Leamy 1993) that promotes anisotropy
and can bias the estimates based on Procrustes distances
among individuals. Therefore, we estimated Mahalanobis
distances to remove the effect of anisotropic variation
(Klingenberg and Monteiro 2005). This type of distance
might be especially appropriate for skulls, where integration
is pervasive (Klingenberg 2013). It may be noted that a
reliable estimation of Mahalanobis distances is very
demanding in terms of sample size, but in our case the
number of individuals is more than eleven times bigger than
the effective dimensionality of the data.

Although their usage is controversial, Procrustes dis-
tances frequently served as a measure of developmental
instability (Klingenberg 2015). The fact that mice are
motile organisms and therefore the differing effects of
environment on each side of the skull may be negligible
justify this choice. Nonetheless, for most of the genomic
markers one genotype has a larger sample size, and
therefore the population mean asymmetry is often closer
to that genotypic population. This unbalanced sampling
might bias statistical associations between genotypes and
distances (Fig. 1). This effect is analogous to the presence
of genetic variation for directional asymmetry (DA),
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Fig. 1 DA correction of the FA measure. a Unbalanced genetic sam-
pling between two different genotypes (blue and black). The mean
population (unfilled circle) is next to the black (larger) population. The
effect of genotype on the variance from the mean population to the
black population is therefore systematically smaller. b The red line

which can similarly explain systematic biases on distances
from each individual to the population average (Levin
2005). To control for these sources of bias, we first esti-
mated the effect of each genotype on the mean asymmetry
(i.e., DA). Thereafter, the residual distances constituted
our FA measures. This procedure removes the effects of
unbalanced sampling and the potential association of
some markers with DA.

Genomic data

The authors who originally collected the data followed a
genotyping-by-sequencing approach and the PstI enzyme
was chosen to obtain a high coverage of the genome. They
multiplexed and sequenced 12 samples per lane on an
Mlumina HiSeq 2500 with single-end 100-bp reads, and
these were aligned to the Mouse Reference Assembly 38
from the NCBI database. Variant discovery was calibrated
against the whole-genome sequencing from a small set of
CFW mice, SNPs and indels from the Wellcome Trust
Sanger Mouse Genome project and SNPs in dbSNPs release
137. Finally, IMPUTE2 was used to estimate missing
genotypes. A complete description of the genotyping pro-
cess can be found in Pallares et al. (2015a).

The raw genomic data in this study consisted of the gene
dosages of a set of genomic markers (Pallares et al. 2015b).
We performed the analysis on these data in order to study
the genomic additive effects. To run a dominance model we
designed a second dataset, where each marker represents the
probability of heterozygosity. Following Pallares et al.
(2015a), we discarded SNPs with low imputation quality
based on genotype probabilities. We kept SNPs with a

PC1

represents a linear model of the genotype on the asymmetric compo-
nent. Residuals from the means for each population (green dots) can be
considered FA measures. This approach, applied in the study, removes
the signal created by unbalanced sampling

maximum genotype probability greater than 0.5 and a minor
allele frequency greater than 2%. Thus we were left with
79,787 SNPs in the additive model and 79,352 in the
dominance model.

Mapping methods

Although our mice sample was conceived to have low
levels of population structure (Nicod et al. 2016), we
controlled for population structure by using linear mixed
models (Speed and Balding 2015). We applied a leave-
one-chromosome-out approach to estimate the genomic
relationship matrix, which reflects relatedness among
individuals. This approach is designed to diminish the
problems caused by the inclusion of tested SNPs in the
relationship matrix (Cheng et al. 2013; Listgarden et al.
2012; Pallares et al. 2015a; Parker et al. 2014). Then, we
assessed the association between the SNPs and FA using a
two-step linear mixed model. First, the variance compo-
nents and a phenotypic covariance matrix were estimated
for each chromosome (based on its genomic relationship
matrix). Second, the Mahalanobis distances (phenotype)
and gene dosages (genotypes) were corrected by
the inverse of the squared root of the phenotypic
covariance matrix, removing the correlation among errors.
We could then fit efficiently the association between FA
and SNPs in a linear model. We ran 1000 permutations to
obtain two significance thresholds (5 and 10%) from a
distribution of the maximum negative log;y p (Churchill
and Doerge 1994). Analyses were run in R v3.3.1 (R Core
Team 2013) using custom scripts (available from the
authors).

SPRINGER NATURE
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Epistasis: genome scan

We performed an epistasis scan to assess non-heritable
genetic associations with FA (previously corrected for
overall DA). Using the method recently developed by
Crawford et al. (2017) (https://github.com/lorinanthony/
MAPIT/; Downloaded 15/05/18). Because there is a huge
number of pairwise comparisons among all the genomic
markers, the marginal epistasis test (MAPIT) selects first a
small number of genomic markers to study in detail later. It
runs a linear model to associate each genomic marker with a
variance parameter composed of the epistatic contribution
of the marker with all other markers. Here we followed this
approach using the Davies method, which is more precise at
the expense of more computational demands (Crawford
et al. 2017). We selected all the markers with p <2.5x 10~
for further comparisons in pairwise analyses. Although
arbitrary, such a relatively high threshold allows the inclu-
sion of more markers potentially involved in significant
pairwise interactions. Pairwise interactions were considered
significant when p <0.001. Because population structure is
not an issue in our population (see results) and MAPIT
deals reasonably well with it (Crawford et al. 2017), the
epistasis tests were run without relatedness correction.

Candidate genes

Significant results were explored using the annotated Mus
musculus reference genome (version m38.92) from
Ensembl (Yates et al. 2016) and Mouse Genome Infor-
matics (Blake et al. 2017). A window of 200 kb around each
SNP was considered to obtain an overlapping set of can-
didate genes. This window size was chosen based on the
genomic linkage disequilibrium of this population, which is
much lower than for other stocks of mice (Nicod et al. 2016;
Parker et al. 2016). This size would correspond to an > of
~0.6. In the cases where no protein-coding genes were
found we reported the processed transcripts, RNA genes
and pseudogenes of interest. To further explore the results
we also merged the markers where all the candidate genes
were the same, and explored the interactions involving each
of these different genomic regions.

Over-representation of known craniofacial or
growth genes

Two reference gene lists were collected from the MGI
HMDC database based on ‘Craniofacial’ and ‘Growth/Size/
Body’ queries (http://www.informatics.jax.org/humanDisea
se.shtml; Accessed 04/04/2018). We removed genes absent
from the mouse genome (i.e., human-specific genes) and
redundancies between the two lists. This correction yielded
1044 and 2829 genes, respectively, from both groups. The
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over-representation of candidate genes within these two lists
was assessed with Fisher exact tests.

To simplify the interaction representation, we merged the
SNPs whose likely best candidate gene was the same. Each
of these genes was then classified as either ‘Craniofacial’ or
‘Growth/Size/Body’ according to the reference list where it
belonged. Protein-coding candidate genes absent from both
lists were classified as ‘Other’ and candidate genes asso-
ciated with regulatory elements as ‘Regulatory’.

Craniofacial enhancers

We assessed the potential importance of craniofacial
enhancers among the interacting markers. Low distances
between the SNPs involved in significant pairwise inter-
actions and their nearest transcription start site might
suggest an important role of regulatory SNPs. To test
whether these distances were significantly lower than
expected, we estimated these distances in 10,000 random
samples with the same number of genomic regions. For
each set of distances, we inferred how many of them were
shorter than the 95th percentile of the distribution of
genomic distances between the craniofacial enhancers in
Attanasio et al. (2013) and their nearest transcription start
site (236 kb). Finally, we estimated how many random
samples showed a larger number of short distances
(<236 kb) than our set of significant SNPs. We repeated
this procedure after merging SNPs with the same set of
candidate genes.

Two strategies were followed to perform the random
sampling. First, random samples were collected uniformly
across the genome for which regions were assumed to be
independent. Second, we tested a sampling with stratifica-
tion by taking into account the number of observed SNPs on
each chromosome. This second sampling considers the
presence of a single causal locus and therefore a strong
dependence between significant loci. For this second case
we considered the minimal distance from the significant
SNPs to their most proximal craniofacial enhancer as the
observed value for the gene region once we merged all the
markers with the same candidate genes.

Gene networks

The complete list of candidate genes obtained from the
significant epistasis pairwise tests was curated against the
STRING databases (https://string-db.org) of known and
predicted protein-protein interactions (Szklarczyk et al.
2017). Results were represented as a network. We built a
second network after merging the genomic regions with the
same list of candidate genes, and a third one representing
the epistasis interactions among the best candidate genes for
each region.
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Fig. 2 Quantile-quantile (QQ) plots for the datasets in the study of
additive and dominant associations. The correction for population
structure (green) does not influence the raw Procrustes data (violet) (r
>0.99). Procrustes distances corrected for DA (orange) are not
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influenced by the population structure either (not shown; r>0.99).
Raw and DA-corrected Procrustes distances are also highly related (r
> (0.87). No significant marker is identified with either of the datasets. a
QQ plot for additive effects. b QQ plot for dominant effects
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Fig. 3 Manhattan plot from the marginal epistasis test. The negative
logl0 of the probabilities from the Davies method (—logio(p)) is
shown for each marker. This test estimates the epistatic variance
between a given marker and all other markers. The plain red line

Results

The results obtained are virtually the same with and
without population structure correction (r>0.99), as
expected from previous studies (Nicod et al. 2016; Pal-
lares et al. 2015a) and the low-heritable nature of FA
(Leamy and Klingenberg 2005; Leamy et al. 2015; Van
Dongen 2006). These low estimates are not surprising
because the sample was designed to standardise the
relatedness among individuals as much as possible (Par-
ker et al. 2014). ASDA correction had a larger influence
on the results (> 0.87), those results are presented here.
Given the 95% significance threshold of 6.61 x 1077, no
genomic marker showed a significant additive association
with shape FA. With a dominance model (significance
threshold of 6.31x1077), we did not obtain any sig-
nificant marker either (Fig. 2).

represents the chosen threshold of —log;((2.5 x 1074), all the markers
with a LOD scores above the threshold are included in the pairwise
comparisons

Epistatic variance and pairwise interactions

MAPIT provided individual SNPs, as well as pairwise SNP
interactions significantly associated with FA (Fig. 3). Con-
sidering a selection threshold of 2.5 x 10~ (the —log¢(p) =
3.6, Fig. 3) on marker probabilities from the Davies method,
a total of 118 markers were selected for further analyses. Of
these, the 9 best-associated SNPs (p < 107°) are clustered in
six regions of 1-3 SNPs (Table 1). One region includes
Hspa2 (Hsp70), one of the most studied genes for DS and
canalisation (Geiler-Samerotte et al. 2016; Takahashi et al.
2010). Only one of these SNPs does not overlap with
protein-coding genes previously associated with either cra-
niofacial or size development (‘Growth/Size/Body’). The
others overlap genes encoding for the transcription factor
Max or the epidermal growth factor receptor (Egfr). Detailed
information can be found in Supplementary Information S1.

SPRINGER NATURE
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Table 1 SNPs best associated to

FA (<1 0-%) Marker Chr Pos (Mb) P Candidate genes®
cfw-2-78028827 2 78.03 4.15%x10°° Cwc22
ctw-4-46702257 4 46.70 7.60x 1076 Tbcl1d2, Gabbr2
1rs33490187 5 40.18 3.88x 1076
1529463914 11 16.94 2.01x1076 Egfr
1526873798 11 16.94 1.98x107° Egfr
1s32442879 12 76.62 3.07x 1076 Sptb, Fntb, Hspa2®
rs47669499 12 77.00 6.42x 1076 Fntb, Max
1529130163 12 77.05 7.60x 1076 Fntb, Max, Fut8
cfw-12-77225182 12 77.22 6.93x 1076 Fut8

Candidate genes in bold are annotated for ‘Craniofacial’, whereas underlined ones are annotated for

‘Growth/Size/Body’

Chr chromosome, Pos position in Mb, p probability from Davies method

!Candidate genes are based on gene content in a 200 kb window
Hspa2 is 214 kb from the associated SNP

Table 2 Most significant

Lo ; . Marker Chr Candidate
pairwise interactions associated
to FA in marginal epistasis test 1s31197155 3 Gng5
1s31926426 1 Prex2
1s33490187 5 Reg-Chr5
1s46801958 11 Sdk2

Marker Chr Candidate Genes )4

cfw-12-104797355 12 Dicerl 5.64x1078
1527620389 2 Bmp7 420x 1077
1s31272574 15 Khdrbs3 6.10x 1077
1529827444 13 Hfe 9.35x 1077

Chr chromosome, Candidate Candidate gene within a 200 Kb window, p probability associated to the

epistasis test

Only interactions with p < 10-6 are shown. Candidate genes in bold are annotated for ‘Craniofacial’ or for

‘Growth/Siz

MAPIT found 162 significant pairwise comparisons
(Table 2 and Table S2). These 162 significant interactions
were composed of 68 SNPs overlapping with 377 candidate
genes, of which 201 are protein-coding genes. Based on
gene contents, these SNPs correspond to 50 genomic
regions. After merging those with equivalent candidate
genes, we were left with 109 interactions composed of 38
differing genomic regions. Six of the 38 equivalent regions
were involved in 10 or more interactions (Table 3). The
genomic region showing the majority of interactions over-
laps Mecom, which is a well-known craniofacial gene
causing an abnormal skull morphology (Hardisty-Hughes
et al. 2010). We may note also that Hspa?2 is in a region of
1 Mb, presenting the most of interactions at the SNP level.

Over-representation of craniofacial genes

Most of the SNPs involved in these pairwise interactions
have one or more candidate genes involved in craniofacial
development. We found that these SNPs are related to shape
or skeleton growth via one or more protein-coding genes
(see Table S3). Craniofacial genes were significantly over-
represented (11 genes, p=1.78x107°), although for

SPRINGER NATURE

Table 3 The 10 most interacting genomic regions within the
109 significant pairwise interactions

Candidate gene Chr Classification Number of appearances
Mecom 3 Craniofacial 20
Pabpc6 17 Other 19
Sdk2 11 Other 19
Prex2 1 Growth/size/body 14
Kcnmb?2 3 Other 13
Reg-Chr5 5 Regulatory 11
Bmp7 2 Craniofacial 9
Trim71 9 Craniofacial 9
Cwc22 2 Other 8
Gng5 9 Craniofacial 8

Each row shows the candidate genes within a 200 Kb window, the
position within the genome (Chr chromosome), the most likely
classification of the best candidate gene assessed in Mouse Genome
Informatics (Blake et al. 2017) and the number of times the genomic
region (identified with the candidate gene) appears within a significant
pairwise interaction with one of the other 38 regions

‘growth’ genes the test is just marginally significant (9
genes, p =0.006).
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Contrary to the 68 epistatic SNPs to the 7283 enhancers
reported by Attanasio et al (2013), we found that 54 SNPs
were located within the 95th percentile of distances between
enhancers and transcription start sites. This proportion is
significantly higher than in a random sampling of 68 SNPs
along the genome (p = 0.005) or stratified by chromosome
(p =0.01). However, when only the 38 best candidate genes
were assessed, the association with craniofacial enhancers
vanished (p = 0.37). This shows that the initial association
was probably due to a set of 21 SNPs within a 741 kb region
on chromosome 12, which overlaps the same candidate
genes: the Fntb Max Fut8 cluster.

Gene networks

The literature-curated network obtained from SPRINT
(Fig. 4a) connected about 44.3% of the 201 protein-
coding genes. This gene network had more interactions
than expected from a random set of proteins (p < 0.0001)
even when the large histone cluster was removed. The
network appears to be enriched for embryonic skeletal
system morphogenesis and development (GO:0048704
and GO:0048706, fdr=0.008) and embryonic organ
development (GO:0048568, fdr=0.03). Some of these
edges represent significant interactions associated with
FA (thicker edges in Fig. 4a). Interestingly, one of them
represents the interaction between Pabpc6 and HspaZ2: the
former is the second most frequent candidate as it appears
in 33 of the 162 epistatic interactions, and Hspa2 appears
as the central gene in the network. Histone Cluster 1
(corresponds to the Hfe candidate gene in the epistatis
network, Fig. 4b) also appears as an important hub in this
network. When only the 38 best candidate genes were
considered, five edges were common with the epistatic
network without the regulatory regions (Figure S4). They
link a set of six regions: Bmp7, Pabpc6, Hspa2, Max,
Mecom/Actrt3 and Hfe/Histone Clusterl.

Discussion

Our results precluded a major role of single SNPs in FA and
confirmed epistasis as the main driver of FA variation. The
epistasis test detected significant epistatic associations
among markers, as well as specific genomic regions that
account for a relatively large amount of the epistatic var-
iance. These results confirm empirically the previous sug-
gestions about the genetic architecture of FA (Burgio et al.
2009; Leamy et al. 2005; Leamy et al. 2015; Leamy et al.
2002). Our population also exhibits some of the previously
described features, such as a very low structure of the
mapping population (Nicod et al. 2016; Pallares et al.

2015a) and weak patterns of genetic DA (Mikula et al.
2010; Mikula and Macholan 2001).

An epistatic basis for FA variation

A major role for additive effects in FA was unexpected
(Leamy et al. 2015). However, the fact that no genomic
marker at all has been additively associated to FA may be
surprising to some extent. Other genomic processes, such as
epistasis, could show linear associations between individual
markers and the phenotypic trait under certain circum-
stances (e.g., when one of the associated genotypes has a
big effect overall). On the other hand, the molecular roots of
asymmetry are relatively complex (Davies et al. 1996) and a
wide range of different developmental processes can origi-
nate FA (Scheiner et al. 1991): from subtle ecological
fluctuations to serious genetic disorders. Therefore, the
heterogeneity of the processes originating FA (i.e., non-
linear interactions between genome, environment and
development) might confound one or several linear asso-
ciations when a consistent measure of FA over the whole
genome is considered. Indeed, nonlinear developmental
processes have been associated with phenotypic robustness,
although these have not been measured with FA (Green
et al. 2017). The lack of susceptibility of the head devel-
opment to environmental fluctuations (Beardmore 1960) or
a constrained expression towards common axes of variation
(Klingenberg 2013) might also be among the possible
explanations to the absolute lack of additive effects.

Some studies have suggested that specific proteins may
control phenotypic robustness, such as Hsp90 (Takahashi
et al. 2010). Heat shock proteins commonly figure in the
literature associated with DS and canalisation (Takahashi
et al. 2010), but mixed results have tempered the initial
enthusiasm for this kind of deterministic association. Recent
results led to the idea that heat shock proteins are con-
tributing to, rather than controlling, DS (Debat et al. 2006;
Geiler-Samerotte et al. 2016): the current view is that heat
shock genes are regular epistatic genes involved in DS, with
differing roles and weight depending on the structure. Here
we mapped Hspa2 (Hsp70), as one of the best-associated
SNPs but also as a very proximal candidate (~200 kb) on
chromosome 12, to a 1 Mb region showing most of the
significant interaction and also containing an important
transcription factor. Hsp70 also appears to be a central node
in the protein interaction network built from the literature,
which is coherent with the role attributed to Hsp90 in yeast
experiments (Geiler-Samerotte et al. 2016).

Epistasis is generally accepted as an important pattern
widespread in nature (Moore 2003) and in the evolution of
multivariate traits (Jones et al. 2014; Weinreich and Knies
2013). Previous studies have shown that epistatic

SPRINGER NATURE
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Fig. 4 Gene network proposed
to be involved in the
development of the mouse skull.
a Protein-interaction network
based on the list of candidate
genes and estimated with the
SPRINT database. Edges in grey
are between genes located
within the same genomic region.
b Network based on the 38 best
candidate genes identified in the
pairwise interactions. Each node
represents the most likely
candidate gene for each SNP
(Table 2) and is connected to
other nodes according to the set
of significant interactions (Table
1). The node colours relate to the
functional classification of the
gene (‘Craniofacial’ or ‘Growth/
Size/Body’) obtained from the
HDMC/MGO databases

relationships may hide the genomic variation associated
with complex traits (Shorter et al. 2015). Our findings
confirmed this idea. The epistatic associations found here
constitute a starting point for the study of the genetic
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disequilibrium that allows a better resolution (Nicod et al.
2016) than classical QTL mapping (Maga et al. 2015;
Navarro and Maga 2016; Pallares et al. 2015a). The pre-
ferential choice of protein-coding genes as candidate genes
is classic in GWAS, but the generation of facial shape
variation is known to integrate heterogeneous genetic
pathways (Hallgrimsson et al. 2014), as well as distant-
acting enhancers (Attanasio et al. 2013). Therefore reg-
ulatory elements may well be behind some of the significant
regions, but disentangling them will require much-higher-
resolution data.

Skull DS is associated gene networks in craniofacial
and skeletal development

Our results did not involve any common SNP or candidate
gene suggested by the GWAS of the symmetric component
of the skull (Pallares et al. 2015a). This might suggest that
mean and variance differences in shape are not associated
with the same genomic regions. However, a note of caution
is needed here. The original analyses on the symmetric
component of shape implemented a suboptimal strategy for
a multivariate trait, i.e., mapping one principal component
at a time. Such strategy lowers the statistical power (Gale-
sloot et al. 2014) and may lead to a reduced list of asso-
ciated markers. Indeed, the enrichment for craniofacial
regions and embryonic skeletal development in both
candidate-gene and literature networks suggests a likely
common ground for mean shape and FA.

Our results indicate with reasonable confidence that
genomic regions involved in the development of the cra-
niofacial skeleton and in cellular processes, as well as
regulatory elements are behind DS. It is also not surprising
that many of the significant markers are expressed within
the brain, since it is in turn associated with skull shape
(Perrine et al. 2017; Richtsmeier et al. 2006). For instance,
Dicerl is required to develop a normal forebrain and its
absence causes significant facial abnormalities (Hall 2014).
In addition, some of the candidate genes are sometimes
associated with brain disorders, e.g., Sdk2 (Otowa et al.
2009), which leaves open the possibility of an association
between the expression of that protein, the development of a
brain disorder and skull developmental instability (Egan
et al. 2017).

This complex network of a relatively small group of genes
is congruent with previous suggestions about genomic coa-
daptation (Clarke 1993) and the description of DS as an
emergent property of networks (Barkoulas et al. 2013). Such a
developmental network would be composed of a set of
protein-coding genes directly involved in the formation of the
skull and a set of regulatory genes that can modulate their
effects through direct (Nadeau 2001) or indirect (Gjuvsland

et al. 2007) pathways. This pattern might be common in
nature (Flint and Mackay 2009; Gilchrist and Partridge 2001;
Shook and Johnson 1999) although evidence against this
hypothesis is also available (Polak and Starmer 2001). Our
results are therefore coherent with the general notion about the
genotype—phenotype map (Wagner and Zhang 2011),
although specific experimental set-ups would be required to
confirm our suggestions (Lehner 2011; Mackay 2013).

Large overall effects of some interactive hubs

Some individual markers are highly associated with the
general epistatic variance, but they are not common within
the most significant pairwise interactions, e.g., the Egfr
region. This apparent contradiction is due to the fact that
MAPIT does not analyse all the possible pairwise interac-
tions within the genome. However, our results might also
suggest the presence of some complexity within the net-
work: interactions might involve more than two genes at a
time and different degrees of intensity, especially those
where regulatory elements are involved.

Regulatory elements are candidates to be high-interacting
nodes. Indeed, the SNP that is best associated with the
general epistatic variance, rs33490187, is in an area where
no protein-coding gene has been reported. The fact that DS
is a consequence of the buffering of environmental fluc-
tuations could suggest an optimal configuration of the net-
work. An optimal configuration would imply a base of
DNA and RNA regulatory elements, which are less sensi-
tive to subtle microenvironmental changes (i.e., temperature
and pH) than proteins. Indeed, recent studies have
acknowledged the importance of these regulatory elements
(Fatica and Bozzoni 2014). Our results support the impor-
tance of these elements, although evidence against this
hypothesis is also pervasive (Hartmann 2009). Here we
found that some of the candidate genes we have identified
are strongly regulated by miRNAs. For instance, it is well
characterised how Mir669k interacts with Dicerl to define
the role of the latter in development (Calabrese et al. 2007).
However, this miRNA also has as predicted targets Bbsl,
Cdk2 (Blake et al. 2017) and Pabpc6 (targetscan.org)
among others. This adds an extra layer of complexity to the
interacting network of genes that may be behind DS. Fur-
ther studies would be needed to study how the interaction of
these miRNAs happens with many genes simultaneously, in
order to accurately predict the structure of the network.

Conclusions

The non-additive nature of FA proposed here suggests that
skull development is a complex interactive network of
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protein-coding genes and genomic regulators (Hallgrimsson
et al. 2014). These epistatic relationships also support the
idea of craniofacial DS as an emergent property of this
network complexity (Barkoulas et al. 2013). Evolution has
shaped morphological variation via pleiotropy and other
processes involving trade-offs (e.g., genomic coadaptation)
(Klingenberg 2013). The resulting complexity of the
genotype—phenotype map can explain the differing role of
some important protein-coding genes in DS (Debat et al.
2000; Debat et al. 2009). As in other domains within
genetic regulation, a full understanding of these epistastic
networks in DS is still far from complete.

Data archiving

This article does not report new empirical data or software.
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