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The classification of Western European flanged axes dating to the Middle Bronze Age (1650–1350 BC) is very
complex. Many types of axe have been identified, some of which have numerous variant forms. In the current
French terminology, all axes are divided into two generic groups: namely “Atlantic” (Atlantique) and “Eastern”
(Orientale). Each of these generic groups, however, is highly polymorphic, so that it is often very difficult for
the operator to classify individual axes with absolute confidence and certainty. In order to overcome such prob-
lems, a new shape classification is proposed, using morphometric analysis (Elliptic Fourier Analysis) followed by
unsupervisedmodel-based clustering and discriminant analysis, both based on Gaussianmixture modelling. To-
gether, these methods produce a clearer pattern, which is independently validated by the spatial distribution of
the findings, and multinomial scan statistics. This approach is fast, reproducible, and operator-independent,
allowing artefacts of unknown membership to be classified rapidly. The method is designed to be amendable
by the introduction of new artefacts, in the light of future discoveries. This method can be adapted to suit
many other archaeological artefacts, providing information about thematerial, social and cultural relations of an-
cient populations.

© 2015 Published by Elsevier Ltd.
1. Introduction

Many types of flanged axes produced in Western Europe during the
Middle Bronze Age (1650–1350 BC) have been recognised by archaeol-
ogists (e.g. Abels, 1972; Briard and Verron, 1976; Gomez de Soto, 1980;
Kibbert, 1980; David-Elbiali, 2000; Gabillot, 2003; Michler, 2013). Most
types have numerous variants, so that fine typological classification on
the sole basis of their shape is generally problematic. The situation is
even more complex because typologies generally combine several
criteria, such as edge height, the possible presence of ornaments, and
the total size of the object, but do not always take all of them into ac-
count. These descriptive criteria are not always given the same weight
in type definition. Briard and Verron (1976) merged axe types into
two generic groups: namely “Atlantic” (Atlantique) and “Eastern”
(Orientale), broadly following the location of the find: closer to the
Atlantic coast, or closer to the Alps. Nevertheless, this distinction no
longer seems completely adequate to differentiate rapidly between
axes of each generic group. For instance, the shapes of concave-blade
flanged axes (Atlantic group) and those of the Neyruz type (Eastern
Université Bourgogne Franche-
group), which each have several variant forms, are at first glance very
similar (Fig. 1a:2, 4). Since the 1970s, specific studies on axes, and re-
gional syntheses (Butler, 1995/1996; David-Elbiali, 2000; Gabillot,
2003; Michler, 2013) on metallic artefacts dating from the Bronze Age
have refined the previous classification presented by Briard and
Verron (1976), but they have not really called into question this early
work.Without a precise location for the find, it is impossible to attribute
a flanged axe to a group, except for some specific types, such as
Roseaux-Morges, Möhlin, or the large cutting blade type
(Fig. 1b:12–14; Abels, 1972; Briard and Verron, 1976). In any case, a ty-
pological systembased on the location of thefind,whichmay seemcon-
venient, would not be appropriate to tackle archaeological questions
relating to the quality of exchanges or potential stylistic and technolog-
ical influences between cultural entities.

During the Middle Bronze Age, in addition to flanged axes, another
category of object, the so-called axe-ingots, was also produced
(Fig. 1c). Their shape is quite similar to common flanged axes, but
they are almost exclusively composed of copper (e.g. Rychner and
Kläntschi, 1995), and do not seem to have been used after casting (e.g.
Nicolardot and Verger, 1998). The casting cone and burrs on the edges
are still present on axe-ingots, unlike functional axes. Twomain hypoth-
eses concerning their function have been formulated: they could have
been designed as copper ingots for future casting operations, or they
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Fig. 1. Typological classification ofMiddle Bronze Age flanged axes, based on Briard and Verron (1976). a) Atlantic and Eastern types integrated into the corpus, b)morphologically specific
flanged axe types not included in the corpus, c) examples of axe-ingots found in several eastern French sites. 1) Narrow-blade flanged axes, 2) Concave-blade flanged axes, 3) Salez type,
4) Neyruz type, 5) Low flanged axes, 6) Languedoc types, 7) Shoulder type, 8) Baraque type, 9) Ricardelle type, 10) Porcieu-Amblagnieu type, 11) Large cutting blade type, 12) Roseaux-
Morges type, 13) Möhlin type, and 14) Langquaid type.
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may have served as ameans of exchange. Their potential for use as gen-
uine axes cannot be excluded (Nicolardot and Verger, 1998; Delrieu
et al., 2015).

The present study aims at systematising the typological classification
of these flanged axes. Our approach is based exclusively on object
shapes and their treatment by objective statistical techniques, repro-
ducible in time and space by any operator. Since the 1960s, many mor-
phometric methods have been developed. They are based on linear and
angularmeasurements of objects (e.g. Roe, 1968; Hodson, 1971; Barker,
1975; for Bronze Age axes see Lull, 1983), sometimes simplified by de-
duced categorical variables (e.g. Hodson et al., 1966; Sackett, 1966;
Vaginay and Guichard, 1988), and they have proved their worth in ar-
chaeological classification. More recently, morphometrics applied to ar-
chaeology has evolved into more complex methods including more
information (e.g. Brande and Saragusti, 1996; Gilboa et al., 2004;
Lycett, 2009; Karasik and Smilansky, 2008, 2011). These methods are
known to allow a better description of the entire shape and a separation
of shape and size. They provide a continuous morphospace allowing
more complex statistical analyses, including the reconstruction of the
mean shape and shape diversity within the group of interest (Adams
et al., 2004; Navarro, 2003; Zelditch et al., 2004; Slice, 2005; Wilczek
et al., 2014). Two recent studies undertaken on Bronze Age palstaves
(Forel et al., 2009; Monna et al., 2013) have already demonstrated
that combining geometric morphometrics with spatial analyses can be
very effective for the better understanding of artefact production and
use.

Our first goal was to apply these techniques to closed contours ob-
tained from a corpus of 247 axes (all available as drawings, either in
published literature or in personal collections), in an area circumscribed
by the French Atlantic coast, the Rhine valley and Switzerland. A new
classification approach, based on shape similarities, unsupervised clus-
tering with Gaussian mixture modelling, and discriminant methods,
was then developed. The performance of this model was spatially
checked using multinomial scan statistics and compared to classifica-
tions currently used in the study area. Finally, 21 axe-ingots were intro-
duced into the typological model, for attribution to one of the newly
established groups.

2. Material and methods

2.1. Corpus

The choice of the corpus was guided by several constraints: (i) the
objects had to be intact and undamaged by use or corrosion, and (ii)
their silhouette must not have been drastically reworked after they
came out of the mould. Axe preservation was estimated visually from
available items, or obtained from the literature (Bocquet, 1970; Abels,
1972; Gomez de Soto, 1980; Kibbert, 1980; Gabillot, 1997, 2003;
Nicolardot and Verger, 1998; Mélin, 2012; Gabillot et al., 2014;
Thevenot, unpublished). Although the above-mentioned constraints
considerably reduced the number of individuals available (approxi-
mately 50–60% of available items were kept for further analysis), this
selection process is expected to produce robust results. The final corpus
consists of 247 reasonably contemporaneous flanged axes (126 from
the Atlantic group, and 121 from the Eastern group), discovered in
132 sites, located in what is now France, Switzerland and Germany.
Other more specific types, visually very different from the corpus of
interest (Fig. 1b), or simply very scarce (e.g. type Strasbourg,
Herbrechtingen, Luzern, Riquewihr), were not integrated into the
present study. Finally, four generic groups of axes (concave and narrow
blades for the Atlantic generic group and Salez and Neyruz types for the
Eastern generic group) were retained in the study. The spatial distribu-
tion of these axes (Fig. 2) is marked by a clear gap between the two
groups, possibly due to the relative absence of archaeological



Fig. 2. Distribution map of flanged axes and axe-ingots.
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exploration in that area, but which could also reflect an archaeological
reality. This corpus was supplemented by 21 “axe-ingots” (e.g.
Nicolardot andVerger, 1998), found in hoards located in the area rough-
ly separating the zones of Atlantic and Eastern flanged axes.

2.2. Morphometrics

2.2.1. Data acquisition, drawings, and outlines
Acquisition follows the procedure described in Forel et al. (2009),

Monna et al. (2013) andWilczek et al. (2014). Briefly, all published im-
ages obtained from the available documentation (Supplementarymate-
rials S1, Fig. 3ab) were redrawn on tracing paper by a single operator
(Fig. 3c). These drawingswere then scanned at 300 dpi, and each silhou-
ette was orientated vertically, using the first eigenvector computed on
the x-, y-coordinates (Fig. 3d). After this step, each silhouette was sub-
sampled, using 200 equally spaced points, starting from the point
possessing theminimum y-coordinate value (Fig. 3e). Original drawings
were hand-produced by the same operator, but may differ to some ex-
tent from the original object. However, given the number of artefacts
processed, it is reasonable to think that any possible awkwardness in
the drawings of some specimens will be insignificant for the final
results.
2.2.2. Extraction of morphological data
The contour of the axe is taken to be a parametric equation defined

as x(t) and y(t), where t is the displacement step along the outline, t ∈
[1,…,200]. Decomposition is then performed by Elliptic Fourier Analysis
(EFA), producing four coefficients by harmonics i (i.e. Ai, Bi, Ci, and Di).
The greater the number of harmonics, the better the reconstruction of
the original contour. These coefficients are commonly used as new var-
iables to describe the shape (Kuhl and Giardina, 1982; Lestrel, 1989;
Navarro et al., 2004). Normalisation of flanged axes was performed by
the major axis of the first harmonic (Kuhl and Giardina, 1982; Rohlf
and Archie, 1984; Furuta et al., 1995; Zhan and Wang, 2012), and coef-
ficients were size-normalised, using the square root of the harmonic
amplitudes. The first three coefficients of the first harmonic (A1, B1
and C1) become constants and can be ignored in further calculations.
Note that the fourth coefficient (D1) of the first harmonic is retained,
as it represents the minor axis of the first ellipse, and contains



Fig. 3. The data acquisition pipeline: a) example of original drawings accessible in the literature (here Kibbert, 1980), b) original drawing of a flanged axe, c) axe outline redrawn by the
operator and scanned at a resolution of 300 dpi, d) vertical orientation of the axe, using the first eigenvector computed on the x-, y-coordinates, and e) sampling of 200 equally spaced
points along the outline.

Fig. 4. The quality reconstruction of flanged axes, based on an increasing number of harmonics. The original silhouette corresponds to the black line while the shape reconstructed by a
given number of harmonics is expressed as a grey polygon. Further calculations were performed using 11 harmonics (see grey boxes).
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information about elongation (Iwata et al., 1998; Michaux et al., 2007;
Helvaci et al., 2012).

The minimum number of harmonics needed to properly reconstruct
shapewas investigated by the harmonic power (Lestrel, 1997). First, the
power carried by the harmonics i was defined as Pi:

Pi ¼
Ai

2 þ Bi
2 þ Ci

2 þ Di
2

2
: ð1Þ

The reconstruction quality obtained for a given number of har-
monics, say n, was estimated by calculating the relative cumulative
power of the first n harmonics, expressed as a percentage of the total
power, i.e. the sum power carried by all harmonics (Renaud et al.,
1999; Helvaci et al., 2012). The relative cumulative power stabilises at
a value close to 100%, on average, from 7 harmonics (Supplementary
materials S2), but 11 harmonics (corresponding to 41 Fourier coeffi-
cients) were finally retained, to ensure a finer reconstruction of artefact
shapes in all cases (Fig. 4).

2.2.3. Statistical treatment of morphological data
Fourier coefficients were treated by Principal Component Analysis,

PCA (Jolliffe, 2002), a procedure which maximises the variance carried
by the first axis. This analysis produces a projection of the artefacts
into a low-dimensional, visually friendly, Euclidian space, or
morphospace, in morphometric terms. However, one major drawback
with PCA is that the representation is strongly affected by themost out-
lying artefacts, i.e. those contributing most to the variance. This implies
that any possible structurewithin the set of themost common artefacts,
that is to say those projecting close to the centre of the PCA space,will be
blurred. To circumvent this issue, self-organizing maps (SOMs), a class
of neural-network algorithms (Kohonen, 2001), were also computed.
These techniques are now increasingly used for data visualisation, clus-
tering and classification of large datasets (Yin, 2008). They allow repre-
sentation of a multidimensional dataset by nonlinear projection of
artefacts in a lower dimension space, usually represented by discrete lo-
cations in a regular 2D lattice. Despite the loss of linearity in the output
space, the topological relationships between objects (the order of the
distances) are preserved (Liu and Weisberg, 2005). In our case, the
use of SOMs can provide a first, exploratory step for further clustering
of large datasets (Yin, 2008). Artefacts are assigned to the most similar
prototype (also called codebook) vectors, which represent a set of loca-
tions summarizing the original data. Interestingly, the density of code-
book vectors increases with the density of artefacts, making possible
(unlike PCA) a high level of detail in the structure of the data where
the artefacts are the most numerous. Practically, the codebook vectors
are initiated at random. They are then progressively displaced by an it-
erative process, following an algorithmreasonably similar to the one ap-
plied for the widely used k-means clustering (more details about the
procedure can be found in Wehrens and Buydens, 2007; Wehrens,
2011; Kung, 2014). It should be noticed however that different tunings
(number of codebook vectors, type of topology used, etc.) will produce
different outputs. Several tries are recommended. If a relevant structure
exists within the data, the maps produced will tend to be similar.

The final determination of groups was then performed using the in-
creasingly popular Gaussian mixture models (McLachlan and Peel,
2000), where membership association of individuals is probabilistic
(Wehrens, 2011). The clusters are assumed to follow multivariate nor-
mal distributions here. The point is to find the density of each cluster,
their covariancematrix andmean, as well as the conditional probability
of membership. This is achieved using a two-step iterative Expectation–
Maximisation (EM) algorithm (Dempster et al., 1977), where the condi-
tional probabilities are estimated by the Expectation step and the fea-
tures of the cluster by the Maximisation step. The optimal number of
clusters for classification is determined by likelihood. However, the like-
lihood is expected to increase with the number of clusters, so that the
final decision should be taken by examining a measure penalized by
the number of parameters sought. The choice of the number of clusters
was made using the Bayesian Information Criterion, or BIC (Schwarz,
1978; Baudry et al., 2010; Wehrens, 2011), and more particularly by
close examination of the function:

ΔBIC ¼ 2 logLi− logLj
� �þ pj−pi

� �
logn ð2Þ

where j is the number of groups considered and i is this number of
groups minus 1, L corresponds to the likelihood, p to the number of
free parameters in the model, and n to the sample size. In other
words, ΔBIC expresses the gain in information when an additional
group is considered. The posterior membership attribution, computed
using an increasing number of clusters, was also examined. If the
model is relevant and artefacts well classified in the clusters thus creat-
ed, the posterior probabilities shouldmost of the time be close to 1. Dis-
criminant Analysis based on Gaussian finite mixture modelling was
then applied to establish group membership for unknown artefacts
(here, axe-ingots).

2.2.4. Geographical treatment of morphological data
Axe distributions were mapped by applying a Gaussian kernel func-

tion to the location of artefact finds. Map smoothness depends greatly
on bandwidth, a parameter of the kernel function: the higher the band-
width, the smoother the kernel surface (Baxter et al., 1997). Optimal
values may be obtained by cross-validation, as recommended by
Wand and Jones (1994), but this algorithm tends to create roughness
in the estimate. To reduce the risk of overinterpretation, a bandwith of
65 km was applied, following the procedure of Stevens et al. (2009).
Multinomial scan statistics (Jung et al., 2007) were used to complement
the geographical mapping of different groups of axes. The aim of this
method is to identify non-random spatial patterns (i.e. clusters) in the
geographical space. The null hypothesis assumes that the probability
of belonging to a given type is the same everywhere. The alternative hy-
pothesis states that, at least for one group, membership probability is
not uniform in all parts of the area. Basically, a zone of interest is pro-
gressively scanned using a scanning window of increasing diameter,
and the number of items in each category is counted, inside and outside
the scanning window (Jung et al., 2007). Significant geographical clus-
ters, where type distributions are different from the rest of the map,
are identified using likelihood ratio tests. A Monte Carlo procedure al-
lows p-values to be calculated (Jung et al., 2010).

In practice, acquisition and statistical treatments were performed
using the set of functions found in Claude (2008), together with the
MASS (Venables and Ripley, 2002), mclust (Fraley and Raftery, 2002,
2007; Fraley et al., 2012), momocs (Bonhomme et al., 2014), kohonen
(Wehrens and Buydens, 2007), and ks (Duong, 2007) packages, all writ-
ten for the free R software (R Core Team, 2014).Multinomial scan statis-
tics and geographical mapping were performed using SaTScan v9.3.1
(http://www.satscan.org/; Kulldorff et al., 1998) and Quantum GIS
2.6.1. (http://www.qgis.org; QGIS Development Team, 2015), both of
which are freely available software programs.

3. Results and discussion

3.1. Evaluating current typology (Atlantic vs Eastern generic groups)

Axes belonging to the Atlantic and Eastern groupswere projected on
to a PCA-based morphospace, in which the first two components ac-
count for almost 86% of the total variance (Fig. 5). The first principal
component (PC1) is characterised by an overall enlargement of flanged
axes. The second, PC2, depicts the ratio between cutting edge length and
body width. Atlantic and Eastern axes occupy approximately the same
area in the PCA-based morphospace, so that neither generic group can
be clearly distinguished by this analysis. It should, however, be recalled
that PCA is not specifically designed to test the presence of possible

http://www.satscan.org/
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Fig. 5. Principal Component Analysis. Projection of the 247 items in a PC2 vs PC1 morphospace. The first two principal components together account for almost 86% of the total variance.
Grey shapes, reconstructed by the inverse Fourier transform, represent 64 virtual axes.

386 J. Wilczek et al. / Journal of Archaeological Science: Reports 3 (2015) 381–391
groups, which is why a multivariate analysis of variance (MANOVA)
was computed on the Fourier coefficients. The difference between the
two generic groups, Atlantic and Eastern, is highly significant
(p b 10−15). A significant percentage of specimens are a posterioriwell
classified, when linear discriminant analyses (LDA) are applied, supple-
mented by either leave-one-out (85%) or two-fold cross-validation
(88%). Provided that both generic groups, previously determined by ar-
chaeologists, are to some extent validated in terms of statistics, it could
be tempting to cease our investigations here. Finer structuration of axe
shapes was nonetheless explored, using self-organizing maps, SOMs
(Fig. 6), as this procedure may allow local features to be better
recognised than by PCA (Wehrens, 2011). The SOM is broadly coherent
with the results of the MANOVA and LDA, as there is no major overlap
between Atlantic and Eastern axes (Fig. 6a). However, the Atlantic
axes are projected on two opposite regions of the SOM, separated by
Fig. 6.Projection of 247 flanged axes on a self-organizingmap. Artefacts belong to a) theAtlantic
groups obtained by unsupervised model-based clustering. (For interpretation of the references
the Eastern group, which does not fit the original interpretation, with
only two groups.

3.2. Exploring a new typological system

The evidence from the SOMclearly suggests thepossible existence of
finer structuration within the two existing generic groups, at least for
the Atlantic corpus. Identifying this internal structure deservesmore at-
tention, and this hypothesis was therefore explored with Gaussianmix-
ture models. A VEI model (varying volumes, equal shapes, and identity
orientation of clusters) was selected by applying a ΔBIC procedure. It
appears that, after 6 clusters, there is no notable improvement in
terms of information (Supplementary materials S3b), so that further
modelling was performed using this value. For each flanged axe, the
probability of belonging to each of the six clusters formed was also
generic group (blue dots) or the Easterngeneric group (red triangles); andb) oneof the six
to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 7. Visual representation of the six groups obtained by model-based clustering. Black lines represent the mean shapes, while grey lines correspond to all group members.
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computed. If the clusters are properly defined, the probabilistic attribu-
tion of items to groups should not be ambiguous. As a result, the maxi-
mummembership probability should be close to 1. Out of a total of 247
items, 224 have a maximum probability above 0.99, with 240 achieving
a probability of 0.90 (Supplementary materials S3a). Such results sug-
gest that the six groups constructed do not strongly overlap in terms
of shape. This result is confirmed by a model-based DA, with leave-
one-out cross-validation, in which none of the specimens was errone-
ously classified. Interestingly, with six groups, the SOM also depicts
clearly separated items (Fig. 6b). To reinforce cluster validation, two
complementary analyses were performed for each group: (i) artefacts
were plotted on the same graph, together with the mean shape,
resulting in clearly visible differences between the six groups (Fig. 7),
and (ii) the location where each itemwas found was mapped, to inves-
tigate possible geographical clusters (Fig. 8). The multinomial scan sta-
tistics show non-random spatial distribution. Four circular zones
(clusters) were detected, in which the distribution of items (in terms
of representation of groups) was significantly different from the rest
of the map (p b 0.001). Zone A corresponds to a greater relative abun-
dance of the flanged axes belonging to G1 and G2, zone B has a greater
number of axes from G3, zone C contains more axes from G3 and G4,
while D, the final zone, encompasses most of the items from G5 and
G6 (Fig. 8, Table 1).

The statistical analysis therefore confirms the existence of two tradi-
tions of flanged axes, corresponding to the Atlantic and Eastern generic
groups mentioned above. Nevertheless, within this classification, a
more complex internal organisation was discovered: the Atlantic axes
can be subdivided into four groups (G1, G2, G5, and G6), while the East-
ern axes form two groups (G3 and G4). This result explainswhy the ini-
tial linear discriminant analysis was able to differentiate between
Atlantic and Eastern axes so efficiently.

The first two groups (G1 and G2) are composed of similar axes,
characterised by a thin, rectangular body, and a rather linear cutting
edge; both forms, but more particularly G2, are very stable in terms of
shape (Fig. 7). They are distributed almost exclusively in the western
part of France, close to the Atlantic coast (Fig. 8, cf zone A). Given the
shape homogeneity of G2, the statistical analysis tends to consider
these axes as belonging to a separate group, rather than attributing
them to G1. Most of these axes could result from a homogeneous unit
of production, explaining why they exhibit such low shape diversity.
The presence of G2 might also result from the structure of the corpus
taken into account, since almost all artefacts belonging to group G2
(36 out of 44) were discovered at a single location. It is worth noting
that zone A corresponds to cultural entities already recognised in cen-
tral western France (i.e. the Duffaits and Vindo-Médocain groups;
Gomez de Soto, 1995). The vast majority of the axes belonging to G1
and G2 were previously described as narrow-blade flanged axes
(Table 2).

The axes from groups G5 and G6 exhibit the largest cutting edges
and are themost heterogeneous in terms of shape (Fig. 7). They are con-
centrated in north-western France (more particularly in the Seine val-
ley — zone D), and to some extent in Switzerland and southern
Germany. Spatially, almost no items from G5 or G6 were discovered in
zone A, while no artefacts from G1 or G2 were found in zone D



Fig. 8. Kernel density maps for the six groups of flanged axes obtained by model-based clustering. Numbers correspond to the number of axes found in one location, while dashed circles
represent the clusters (A–D) provided by scan statistics (purely spatial scan statistics under a multinomial probability model, circle scanning and Monte Carlo randomisation with 999
permutations). Red numbers in squares represent the number of axe-ingots attributed by probability to one of the six clusters. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 1
Concordance between model-based clustering and clustering performed by multinomial
scan statistics. Bold font highlights the concordance between both methods.

Model-based groups

G1 G2 G3 G4 G5 G6

Zones (Multinomial clusters) A 15 39 0 0 0 0
B 1 0 29 3 2 2
C 0 0 16 38 3 4
D 1 4 4 0 18 33
Not associated 4 1 13 6 4 7

Total 21 44 62 47 27 46
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(Fig. 8).Morphologically, groups G1-2 andG5-6 occupy very distinct re-
gions in the SOM (Fig. 6b). The distinction between these two zones (A
and D) is therefore quite clear, suggesting that consumers in each of
these regions followed their own traditions. This pattern does not per-
fectly fit with the previous idea of a rather homogeneous Bronze Age
“Atlantic world” (Briard, 1965; Coffyn, 1985; Brun, 1991),
encompassing all European regions from the Atlantic coast to the
North Sea. In fact, the presence of two distinct areas: (i) zone A, with
flanged axes belonging to G1 and G2, and (ii) zone D, with axes from
G5 and G6, tends to confirm a finer structuration of geographical
space, already evoked by Butler (1963), and supported by the study of
all metallic Middle Bronze Age artefacts discovered in north-western
France (Gabillot, 2003). Note that zone D also corresponds to an area
presenting a high density of contemporary Norman palstaves (Forel
et al., 2009; Monna et al., 2013), suggesting the existence of a specific
cultural area (Gabillot, 2006; Monna et al., 2013). Comparison with
existing typologies reveals that most of the artefacts from G5 and G6
are members of concave-blade flanged axes (Table 2).

The axes in groups G3 andG4 are themost abundant. Their summits,
flanks and cutting edges aremore rounded than those inG1 andG2; this
is especially true of the G4 axes (Fig. 7). Most of these artefacts were
found in an area approximately corresponding to Switzerland: over
the entire territory for G3 (zone B and C), and almost exclusively in
the north-eastern part for G4 (zone C). Some items attributed to G3
can also be found in what is now Germany and in the western part of
France (Fig. 8). These axes (G3) may indicate long-distance contact be-
tween cultural entities, but could also be viewed as noise in the data.
Table 2 shows that axes from G3 correspond to Neyruz and Salez
types. Axes in G4 present good shape stability, and their distribution is
limited to zone C. All artefacts from G4 belong exclusively to the Salez
type.Moreover, 19 artefacts out of the 25 analysed from the eponymous
site of Salez (Switzerland) aremembers of G4. Bronze Age communities
occupying this geographical area therefore used a well-defined type of
axe (G4), which is statistically different from other types, at least in
shape. As G4 axes have not been discovered elsewhere (except for
some rare occurrences), it is reasonable to assume that they were not
massively exported.

Using the discriminant analysis based on Gaussian finite mixture
modelling, each of the 21 ingots can be associated with one of the six
previously defined groups. Most of the axe-ingots were attributed to
G3, but two artefacts were classed as G1, while the remainder were as-
sociated to the most heterogeneous group, G5. This result is not
Table 2
Correspondence between unsupervised typology and current archaeological classification.
Bold font highlights the correspondence between both methods.

Model-based groups

G1 G2 G3 G4 G5 G6

Archaeological
classification

Narrow-blade flanged axes 17 41 4 0 6 4
Concave-blade flanged axes 2 3 4 0 13 32
Neyruz type 1 0 29 0 3 2
Salez type 1 0 25 47 5 8

Total 21 44 62 47 27 46
surprising, as most of the axe-ingots were found close to zone B,
where the flanged G3 axes were the most abundant (Fig. 8).

The low shape disparitywithin groups of flanged axes suggests a rel-
atively well-established production pattern. Metalworkers produced
axes following set technological rules of fabrication, adapted to the so-
cial and cultural standards of Bronze Age communities (Monna et al.,
2013; Gabillot et al., in press). It is tempting to think that the zones
with the greatest number of axes represent the areas of indigenous pro-
duction. However, at least for the corpus studied here, it cannot formally
be decided whether artefacts were produced (i) in one particular place
and then transported to different locations, or (ii) in different places, by
different metalworkers, all following the same shape and style (Orton,
1980). Except for a few examples (e.g. in France, Cabrières, Ambert
and Barge-Mahieu, 1991; Saint-Veran, Barge, 2005), workshops and
mines providing raw materials have not yet been identified in the ar-
chaeological record, so that production and distribution processes are
still debated. In any case, if a strong spatial structure can still be
recognised today, it is because exchanges at the scale of the study area
were likely to be limited, as otherwise the distribution of artefacts
would have been more homogeneous.

4. Conclusion

The current classification for Atlantic and Eastern flanged axes, un-
systematically mixing several criteria (overall shape, supposed area of
distribution, presence of decoration, etc.) was statistically validated on
the outer shape of the flanged axes alone. However, the internal struc-
ture of these two groups can be much better identified by using a com-
bination of modern computational methods. Unlike the traditional
approach, the proposed classification is statistically established from
unsupervised, model-based clustering analyses of morphometric data,
and then validated independently by close examination of the spatial
patterns. There is no need to know a priori the proper classification
model, nor the number of groups. Artefacts of unknown membership
can be classified, as was the case here for axe-ingots. This approach is
quick, reproducible, operator-independent, easy to implement (as the
tools used are freely available), and straightforward to adapt for almost
any type of object where classification on the basis of shape is sought.

Unsupervised classification methods nevertheless have several lim-
itations. Clustering basically aims to attribute all artefacts to an optimal
number of groups. The issue is that what is considered as optimal today
does not necessarily reflect the reality of the field in the past. Model-
based clustering approaches need to have a sufficient number of items
in order to identify individual groups correctly. In archaeology, where
well-preserved artefacts may be scarce, some groups may have existed,
but their representatives may not have survived in sufficient quantities.
Model-based clustering will identify these items as extremes, but with-
out defining a proper group for them, whereas a skilled archaeologist
might be able to individualise them, and to treat them separately. None-
theless, identifying themas extremesmay allow a shift in focus for those
specific artefacts.

Here, the optimal number of groups was determined usingΔBIC: i.e.
n = 6 groups. It is worth mentioning that the operator must pay great
attention to this parameter, because, with an inappropriate number of
groups, classification may produce meaningless output. For example,
in our case, n=5 could reasonably have been considered (Supplemen-
tary materials S3), but the output would not have been as finely differ-
entiated, because the axes classified as G5 and G6 would simply have
been merged together. Note that if the n was lower, say 4 or 3, the ob-
served spatial patterns might have not been identified. In general, in-
creasing n above the optimal value is therefore not as unfavourable as
underestimating n. In any case, the determination of meaningful groups
in the dataset is a problem shared by all classification techniques
(e.g., Orton, 1980; Legendre and Legendre, 1998).

The methodology proposed here is unequivocally statistical: the
more data available, the better the output, meaning that this method
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is not suitable for too small a corpus. Artefact assignment is probabilis-
tic, so that it does not formally answer the question of strict attribution
to a single type, except when the highest probability is considered.
When the classification is based on this highest probability, subsequent
analyses take for granted this classification and therefore no longer con-
sider the level of uncertainty associated with it. It should be mentioned
that the archaeologist experimenting typological attributions based on
visual observation alone, faces the same restrictions, but unfortunately
without any probabilistic control.

The groups defined by this approach cannot be thought of as defin-
itive. Any new artefact added to the dataset will marginally modify
the output. By its very nature, the proposed model for creating and val-
idating the classification is one stage in a never-ending process. Any
new artefact specimen or other observed descriptor for the artefact
(e.g. decoration, chemical composition, or fabrication process) can test
the stability of the proposed model and may thus contribute to its
improvement.

It is noteworthy that the morphometric approach proposed here
takes into account only the shape of the external outline of the axe. Al-
though this feature was probably of some significance in ancient socie-
ties, as indicated by the spatial patterning found here, modern
acquisition techniques allow researchers to develop better integrated
descriptions of artefact shape variation, using 3D models, and not just
focusing on the a priori more informative side-view of the artefact.
Such features can be used and treated in similar ways.

The combination of this approach, applied to several types of objects,
with other sources of information might contribute to a better under-
standing of the material, social and cultural relationships in ancient
populations.

Supplementary data for this article can be found online at http://dx.
doi.org/10.1016/j.jasrep.2015.06.030.
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